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1 Preface

This ‘book’ consists largely of text removed, on the very sensible recommendation of my
editor TJ Kelleher, from a first draft of my The Janus Point published on 1st December
2020 by Basic Books in the United States and by Bodley Head on 3rd December in the
United Kingdom. The history it contains would have taken up too much space in the book
now published and tried the patience of readers wanting to get on to new ideas. However,
colleagues urged me not to jettison the material and to seek to turn it into a separate book
on the discovery of thermodynamics. In the preface to The Janus Point I announced my
intention to do that and as an interim measure to put the material on my website, where
you have now found it. In its present state, it is certainly not ready for publication, in part
because it contains some material that is already included in The Janus Point and should
be edited out and also because the present text needs the inclusion of more material.

For those readers who have or intend to read The Janus Point, Sadi Carnot’s work is
here, in the first chapter, much more fully covered, and the same is true of the next seven
chapters. The chapter on Maxwell’s demon and William Thomson on time contains material
that, except for a small part, is not in the published book at all. The three chapters here
with Boltzmann in their title have significant overlap with material in The Janus Point.

Julian Barbour, College Farm, South Newington.

Note added 16/08/2021. Since I posted this ‘book’ on my website in December 2020,
Paul Sen’s Einstein’s Fridge: The science of fire, ice and the universe has been published. I
recommend the book. It is very readable and contains much historical material that in part
complements my own account. In particular Sen devotes much space to the outstanding
work of J Willard Gibbs, who hardly appears below except for his critical comment about
the need for confinement of a dynamical system if it is to be treated in thermodynamics and
statistical mechanics. This issue, which I believe is critical if the system considered is the
universe, is at the heart of my The Janus Point but is not considered by Sen. If I do manage
to develop this text into a proper book, Gibbs must surely be given more prominence. I was
recently able to acquire second-hand copies of his collected papers in two volumes originally
published shortly after his death in 1903 and subsequently reprinted by Dover. Lucky the
person who has them on their bookshelf.

I have also taken the opportunity to rejig the text, which I had inadvertently right aligned
for the original posting. I, and you if you read this ‘book’, can, like me, be thankful to Kartik
Tiwari, who is reading it and sent me an email yesterday asking “Why is the manuscript
right-aligned? It seems like a very trivial and useless question but it was bugging me so
much that I thought I should ask you.”
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2 Sadi Carnot and the Steam Engine

It can be argued that thermodynamics as a science began with a strange observation made
by Joseph Black (1728-1799). A professor at Edinburgh who discovered magnesium and
advised whisky distillers, he happened during his work to leave two buckets of water in a
room. The first contained ice and water, the second only water. The water temperature
in both buckets was at the freezing point. When he came back a few hours later, the first
bucket contained less ice and correspondingly more water but, to Black’s surprise, it was still
at the freezing point. The water in the second bucket was noticeably warmer. Only when
all the ice had melted did the water in the first bucket begin to get warmer.

Ambient heat in the room had obviously entered the contents of both buckets and brought
about the changes. But why had it only melted some of the ice in the first bucket without
heating the water as well? It seemed heat could disappear. Believing its amount should
remain constant, Black suggested it had become latent, the Latin for hidden. He also showed
that the addition of heat to boiling water did not raise its temperature, which also suggested
it had become hidden. To this day, physics students learn about latent heat, but it now
refers only to the phenomenon Black observed, not his interpretation of it. Latent heat is a
measure of the amount of heat needed to bring about some transformation like the melting
of ice.

Black’s observation was a factor in the development by Antoine Lavoisier (1743-1794)1

of the ice calorimeter, which he used to measure the heat released in chemical reactions.
Together with Pierre-Simon Laplace (1749-1827) Lavoisier developed the theory of caloric.
This was supposed to be an invisible, weighless and indestructible ‘heat fluid’ that could
pass from one body to another, raising the latter’s temperature and causing it to expand.
Besides giving a simple explanation of Black’s observations, caloric served as the foundation
of Laplace’s theory of the propagation of sound. Newton had argued this involved transfer
of heat; Laplace’s caloric-based theory assumed there was none and was a significant im-
provement on Newton’s theory; it continued to make improvements to the theory of sound
for a century.

I have recalled the theory of caloric for two reasons: first, it is a good example of a
seemingly sound idea that, as we will see, remained unchallenged for a surprisingly long
time. The turning points, when they do come, provide much of the fascination in the history
of science. Second, caloric provides the background to this chapter on the work of Sadi
Carnot.

There were, in fact, two Sadi Carnots, the one who first understood the essence of steam

1Known as ‘the father of modern chemistry’, Lavoisier is above all associated with its transformation, so
decisive throughout the scientific revolution, from a qualitative to a quantitative science. He recognized and
named oxygen and hydrogen and helped construct the metric system. There is a superb 1788 portrait of
Lavoisier and his wife by the great painter Jacques-Louis David. The opulence of the setting gives a clue to
Lavoisier’s gruesome end. He was a tax-collecting administrator of the Férme général, which in Revolutionary
France was a greatly hated part of the Ancien Régime, and from its profits he funded his scientific research
and, no doubt, his private life. He was accused of selling adultered tobacco and guillotined. The appeal to
spare his life so that he could continue his experiments is said to have been dismissed by the judge with the
words “The Republic has no need of scientists (savants) or chemists.” This may be apocryphal, but not the
comment of the great mathematician Lagrange: “It took them only an instant to cut off this head, and one
hundred years might not suffice to reproduce its like.”
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engines and the other his nephew, the president of France from 1887 until his assassination
by an Italian anarchist 1894. The first Sadi’s father was Lazare Carnot, a hugely significant
historical figure on account of his role in revolutionary France. He appointed Napoleon
to his first indepedent command and organized the fourteen French armies involved in the
Napoleonic wars. He was the only one of Napoleon’s generals to be undefeated. He was also
a scientist of no mean ability. In 1803 he published a book on mechanical machines such as
pulleys. This reveals an ability, inherited by his son, to see through details and grasp the
essential. He saw clearly that the most important thing in machines is to maximize their
efficiency. That seems obvious today but is in part due to Lazare and even more so his son.

Sadi, who was born in 1796 and was named for a Persian poet then in vogue, seems to
have had a very attractive personality: honourable, sober, modest and an excellent violinist.
There are some brief biographical details about him in the introduction by the editor, E.
Mendoza, to the translation of Sadi’s justly famous Reflections on the Motive Power of Fire
published in 1824 (the year after Lazare died). For those who want to go into these things
a bit more deeply, I strongly recommend the Dover publication of this work, which also
includes translations of two papers, one in 1834 by Émile Clapeyron and the other in 1850
by Rudolf Clausius. These papers transformed Carnot’s ideas into the two fundamental laws
of thermodynamics and were extremely important, since Carnot’s book went completely
unnoticed by contemporary scientists and was only saved from oblivion by Clapeyron, who
usefully sharpened the mathematical formulation of Carnot’s insights and made the later
work of Clausius and others possible.

As was so common until the modern age, Sadi’s life was cut short by disease. He never
lived to see the triumph of his work. As Mendoza reports, in June 1832, during anti-
government riots, he saw “a drunken officer galloping down the street brandishing his sabre
and knocking people down; Sadi dodged under the man’s arm, toppled him off his horse and
threw him in the gutter”. Shortly afterwards, Sadi caught scarlet fever which turned into
brain fever. His younger brother Hippolyte, the father of the later president of France, took
him to the country to convalesce. There, when reading reports of the cholera epidemic then
raging, he actually caught the disease. He died from it in a few hours. He was 36.

Coming now to his book, it is very much a product of its age. Many early scientists were
inspired by pure curiosity—they wanted to understand the world and how it worked. Often,
as with Newton, there was a strong religious component, the desire to discover God’s design
of the world and seek for its purpose. In contrast, the Revolution in France brought rivalry
with other nations, above all England, to the fore. Whereas England’s largely self-taught
engineers had, as much by luck as judgement, made very important technical advances,
above all through the invention of the steam engine, the French revolutionaries aimed at
systematic advance of their country’s interests through the foundation in 1794 of the École
Polytechnique. Its many brilliant teachers and alumni did much to create the modern ethos
and practice of science. Some of this clearly rubbed off on Sadi, as we see from this early
passage in his book:

If the honor of a discovery belongs to the nation in which it has acquired its growth and
all its developments, this honor cannot be here refused to England. Savery, Newcomen,
Smeaton, the famous Watt, Woolf, Trevithick, and some other English engineers, are
the veritable creators of the steam-engine . . . Notwithstanding the work of all kinds
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done by steam-engines, notwithstanding the satisfactory condition to which they have
been brought today, their theory is very little understood, and the attempts to under-
stand them are still directed almost by chance.

Although he was clearly much too modest to make the claim for himself, it was he, the
Frenchman, who changed that ‘little understood’ into ‘much understood’. As so often with
such matters, the long term consequences of first steps are hard to foresee. I doubt if Carnot
had any inkling of the magnitude of the issue that would emerge from his work: why is the
past so very different from the future? Why are we born only to die?

One of the interests in the history of thermodynamics is to see how the early practical
issues in the development of the steam-engine still affect the way scientists seek to grasp the
workings of nature and even the very universe. That will be a theme that runs through the
next few chapters. We can start with a further comment of Carnot: “The most signal service
that the steam-engine has rendered to England is undoubtedly the revival of the working of
the coal mines, which had declined, and threatened to cease entirely, in consequence of the
continually increasing difficulty of drainage, and of raising the coal.” Carnot’s formalized
measure of the work that a steam-engine can perform, to be discussed shortly, can be traced
to ‘raising the coal’. He certainly leaves one in no doubt about its importance:

To take away from England her steam-engines would be to take away at the same time
her coal and iron. It would be to dry up all her sources of wealth, to ruin all on which
her prosperity depends, in short to annihilate that colossal power. The destruction of
her navy, which she considers her strongest defence, would perhaps be less fatal.

Let’s now start with key aspects of Carnot’s work. The rather quaint ‘fire’ in the title
is a hangover from the time, not so distant from Carnot’s, in which fire was still considered
to be one of the four fundamental elements along with earth, air and water. Mendoza notes
that, as late as 1783, Montgolfier said his hot-air balloon ascended because it was filled with
fire, the lightest of the elements. For ‘fire’ in Carnot’s title one should therefore understand
heat, but heat itself is not Carnot’s concern. His concern is what the title says, the motive
power (puissance motrice) of heat. However, within little more than two decades, Carnot’s
work on that had become a major factor in concentrating intense interest on the nature of
heat itself. Science was again driven more by pure curiosity than useful application. For
his part, Carnot believed (at least when he wrote his book) that heat was caloric and hence
indestructible.

Carnot is worth quoting above all for the breadth of his vision and novel approach. He
highlights the vast motive power of heat, how it is responsible for

so many movements which take place on the earth. It causes the agitations of the
atmosphere, the ascension of clouds, the fall of rain . . . the currents of water which
channel the surface of the globe . . . Even earthquakes and volcanic eruptions are the
result of heat.

From this “immense reservoir” with which Nature has provided us “we may draw the
moving force necessary for our purposes . . . ”. The object of heat-engines is to “develop this
power, to appropriate it to our purposes”. He lists the great advantages of steam-engines
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compared with animal power, water falls, and air currents. It has the advantage of economy
over the first and, over the other two, “the inestimable advantage that that it can be used
at all times and places without interruption”. What is more, “it causes rapid extension in
the arts in which it is applied, and can even create entirely new arts”.

What really distinguished Carnot was, first, his ability to make an all-encompassing
survey of the relevant field and, second, identify the critical issues. Both can be seen in these
two paragraphs:

The production of motion by heat has not been considered from a sufficiently general
point of view. We have considered it only in machines the nature and mode of action
of which have not allowed us to take in the whole extent of application of which it is
susceptible . . . It becomes difficult to recognize its principles and study its laws.

In order to consider in the most general way the principle of the production of motion
by heat, it must be considered independently of any mechanism or any particular agent.
It is necessary to establish principles applicable not only to steam engines but to all
imaginable heat-engines, whatever the working substance and whatever the method by
which it is operated.

Because it will become a main theme of the book, let me point out that Carnot’s call,
immensely positive for the development of thermodynamics, for “a sufficiently general point
of view”, was effective precisely because it was simultaneously circumscribed—to “the pro-
duction of motion by heat”. He describes in graphic detail the motive power of heat, but
nowhere asks after the origin of heat itself or, more importanly as we will see, differences of
temperature. That was totally justified for the purposes of his project; any attempt to go
further in his day would have been hopelessly premature. However, it may not be premature
in ours, and we should be careful not to transfer unthinkingly concepts developed to study
steam in a box to an unconfined universe.

Immediately following the two quoted paragraphs, Carnot outlines his approach. Because
he can draw on the already well developed theory of mechanical phenomena, he writes with
confidence:

Machines which do not receive their motion from heat, those which have for motor
the force of men or of animals, a waterfall, an air current, etc., can be studied even to
their smallest details by the mechanical theory.2 All cases are foreseen, all imaginable
movements are referred to these general principles, firmly established, and applicable
under all circumstances. This is the character of a complete theory. A similar theory is
evidently needed for heat-engines. We shall have it only when the laws of physics shall

2Because of Carnot’s reference to mechanical theory, I will mention here things I call gifts of nature. Good
examples are wood or metal, from which it is easy to make rulers to measure distances or goniometers to
measure angles. Then there is the rotating earth, which gives us sidereal time and defines the (astronomical)
day by passage of a chosen star across the meridian. All the observations, stretching over about three
millenia, that enabled Kepler to discover the laws of planetary motion were of angles between celestial
bodies at instants of sidereal time. Goniometers were ubiquitous, but the rotating earth alone had the
accuracy and above all stability for the task. The terrestrial science to which Galileo gave such a boost was
and still is unthinkable without wood, metal and the rotating earth. Their very existence plays a critical
role in the story of time and the universe.
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be extended enough, generalized enough, to make known beforehand all the effects of
heat acting in a determined manner on any body.

Commencing this ambitious undertaking, the creation of a complete theory, Carnot re-
minds his readers of the basic working of steam-engines. In the process he points out a
universal feature of them that seems, up to his time, to have escaped the notice of theoreti-
cians. It was that, to function at all, steam-engines must always transfer some heat from a
hotter to a colder medium.

Anyone looking at the very first commercial steam-engine, Newcomen’s of 1712 developed
to pump water out of mines, would have this fact before their eyes. In it, the furnace heats
cold water to generate steam. On the opening of a valve, the steam enters a cylinder that
contains a piston and is open at the top to the atmosphere, which therefore presents no
effective resistance as the piston is pushed up in its forward stroke. In the top position the
steam inlet valve is closed and another valve opened to let in cold water that sprays and
cools the steam, condensing it and thereby greatly reducing its volume. The external air
pressure now forces the piston back down in its return stroke. Through mechanical linkage,
a weight can be lifted at the same time. Work is done. In summary, heat from the furnace
has generated steam which has done work after which heat has been transferred into the
cold injected water.

At the start of some 4000 words that laid the foundations of thermodynamics, Carnot,
having sketched the typical working of steam-engines such as Newcomen’s, drew the conclu-
sion that the production of motive power in steam-engines is due “not to actual consumption
of caloric, but to its transportation from a warm body to a cold body.” Carnot’s italicized
words bid fair to be the most fruitful false statement in the history of science. It’s so easy
to believe in something that is indestructible. And he made his words seem so plausible by
an analogy:

The motive power of a waterfall depends on its height and on the quantity of the liquid;
the motive power of heat depends also on the quantity of caloric used, and on what we
will call the height of its fall, that is to say, the difference of temperature of the bodies
between which the exchange of the caloric is made. In the waterfall the motive power is
exactly proportional to the difference of level between the higher and lower reservoirs.
In the fall of caloric the motive power undoubtedly increases with the difference of
temperature between the warm and the cold bodies; but we do not know whether it
is proportional to this difference. We do not know, for example, whether the fall of
caloric from 100 to 50 degrees furnishes more or less motive power than the fall of the
same caloric from 50 to zero. It is a question which we propose to examine hereafter.

In his book, Carnot made only partial progress (for the case of an infinitesimal tem-
perature difference) toward the answer to this profoundly important question, the beautiful
answer to which will come later in the book. Before then, we will see how the waterfall
analogy misled not only Carnot but also another great scientist.

Another passage I must quote is this:

the production of heat alone is not sufficient to give birth to impelling power: it is
necessary that there should also be cold; without it, the heat would be useless. And
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in fact, if we should find around us only bodies as hot as our furnaces, how can we
condense steam?

Emphasizing the generality of his vision, he says

Wherever there exists a difference of temperature, it is possible to have also the produc-
tion of impelling power. All substances in nature can be employed for this purpose, all
are susceptible of changes of volume, of successive contractions and dilatations, through
the alternation of heat and cold. All are capable of overcoming in their changes of vol-
ume certain resistances, and of thus developing impelling power.

From this general standpoint, it’s a small step to the next question: “Is the motive power
of heat invariable in quantity, or does it vary with the agent employed to realize it as the
intermediary substance?” Of course, such a question is meaningful only if one can quantify
both heat and motive power. This was the least of Carnot’s problems. Calorimetry was
already a well-developed science. Carnot mentions the amount of heat needed to melt a
kilogram of ice. As for motive power, that should be measured by the work it can do. The
most common unit for that was lifting of a one-kilogram weight through one meter against
the force of gravity at sea level. This obviously matches the basic task in mines: raising
coal to ground level. Note that completely different units and phenomena are here involved.
What has heating water to do with lifting coal? We’ll see in the following chapters how
Carnot’s slim publication helped greatly to find the answer to this question.

Another observation of Carnot was this: difference of temperature can produce motive
power but also motive power can generate difference of temperature. Is not “the friction
of bodies actually means of raising their temperature, of making it reach spontaneously a
higher degree than that of the surrounding bodies”? Also the temperature of gases is lowered
by rarefaction and raised by compression.

Carnot uses this observation to introduce the idea which ensured for him a place in history.
Some two decades after his untimely death, it became known as the Carnot cycle. The
masterstroke was to conceive the design of an idealized heat-engine in which all losses apart
from the inevitable transfer of some heat to the medium playing the role of the condenser
are eliminated. The hardest part of this project was conceptual: how can one know that
some particular machine is ideal, how can one tell that no heat has been lost except that
which must unavoidably be lost if mechanical work is to be done?

In achieving this, one condition above all is absolutely critical. In formulating it, Carnot
noted that if heat is allowed to pass from a hot to a colder medium without at the same time
doing any useful work the potential motive power in the hot body will simply be squandered.
It will have done nothing but heat the colder medium. Thus: “The necessary condition of
the maximum is that in the bodies employed to realize the motive power of heat there should
not occur any change of temperature which may not be due to a change of volume.”

Of course, there must be some temperature difference if any motive power is to be gen-
erated. What Carnot realized was that, by careful arrangement, work can still be done
however small the temperature difference—it can be made infinitesimally small and still al-
low the working medium to expand and do work. Although never fully realizable in actual
practice, this conceptual picture enables one to determine what will be the maximal effi-
ciency achievable under the most favourable conditions imaginable. Carnot introduced this
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very characteristic way of thinking into the theory of steam engines and beyond that into
the nascent science of thermodynamics. What he thereby demonstrated was both surprising
and illuminating. Let us follow him step by step to see how the optimal conditions can be
achieved.

Carnot’s gives two descriptions of the cycle, one with steam as the working medium, the
other with ideal gases. I will describe the latter which has a double advantage: simplicity and
the role, to be described in the following chapters, that ideal gases played in the discovery
and interpretion of entropy.

First, a few words about ideal (or perfect) gases. Basically, they are gases that, when
cooled, become, first, liquid and then solid well below room temperatures. The temperatures
of these phase transitions, from gas to fluid and from fluid to solid, also depend on the
pressure they are under. On account of the simplicity and universality of the laws that
govern their behaviour, ideal gases played a critical role in the discovery of thermodynamics.
When a given weight of such a gas is confined to a vessel of volume V it will settle down into
a stable state—it will equilibrate. The resulting equilibrium state is completely determined
by either its pressure P or its temperature T . In such a state, the temperature, which can
be measured by a thermometer, is constant throughout the confined volume of gas, as is the
pressure. The three quantities P, V, T are called state functions. If, for any given ideal gas,
any two of the state functions are known, then the third can be found through the relation
that connects them. It is called the equation of state. Equilibration plays a central role in
thermodynamics and much of the discussion in this book will be about it.

To describe the Carnot cycle, I need to tell you about only one of the universal properties
of ideal gases. In 1662, Robert Boyle found that if the temperature T of a confined ideal
gas is kept constant, its pressure P and volume V are inversely proportional to each other. 3

This is expressed by the equation PV = C, where C is a constant that depends on the
temperature, the gas and the amount there is of it. Typical curves relating P to V for
the same gas at two different tempertures are the sections ab and cd in Fig. 1. They are
isotherms : curves for the same (iso) temperature.

Figure 1 is in fact Clapeyron’s graphical representation of the Carnot cycle. At the start
of the cycle, a, ideal gas in a cylinder with a piston which has vacuum above it is at a
temperature just below the temperature Thigh of a furnace with which it can be brought
into thermal contact. There can be lots of little lead weights piled on top of the piston
that are just sufficient in number to equal the upward pressure of the gas. If a little heat
is now allowed to flow into the cylinder, the gas will expand a bit, raising the weights. One
of them can be taken off and placed secure at a slightly greater height than it had. The
gas pressure will have decreased just a little and be in balance with the reduced weight it
must balance. This process can be repeated many times. In principle, the lead weights can
be made arbitrarily light and the amount of heat admitted at each step correspondingly
infinitesimal. Theoretically, the most perfect heat engine corresponds to the mathematical
limit in which there is no difference of temperature between the furnace and gas. It is also
very important that the ideal process is perfectly reversible. If a lead weight is put back
onto the piston, the gas will be compressed and get a bit hotter than the furnace due to the
increased weight. The excess heat will flow back into the furnace.

3On the Continent, Boyle’s law is often named for Edme Mariotte, who published it in 1676.
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a

b

d
c

Thigh

Tlow

Figure 1: The Carnot cycle. The bounding curves in the sequence are Clapeyron’s diagram. Flavio

Mercati’s vignettes indicate what the furnace, piston, and coolant do in each stage of the cycle.

Only the piston is in action throughout the cycle; the furnace and coolant each act only once. The

pressure of the gas increases vertically, the volume of the gas from left to right. While a brilliant

idea, the Carnot cycle is completely impractical: a single cycle takes an infinite amount of time.

See the main text for the full description.
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The part of the Carnot cycle just described is the isothermal (same-temperature) stage.
Through it a certain amount of work is done. More can be achieved without drawing any
more heat from the furnace. One simply allows the gas to expand bit by bit by removing
one of the little weights after another. Long after Carnot’s death this part of the cycle, from
b to c, came to be called the adiabatic 4 section. In it, the pressure falls more rapidly than in
the isothermal stage, as is reflected in the steeper slope of the curve. At this stage, a certain
amount of work has been ‘banked’—lots of little weights have been raised through various
heights and some are still sitting on top of the piston. The temperature of the gas in the
cylinder is lower that it was on the isotherm ab.

Now comes a critical point. To be any use, a steam engine must run continuously. To
achieve that, the working medium in the cylinder must be brought back to its orginal state
at the start of the cycle. In Carnot’s idealized cycle, this means from the point c to its
original state at a. This could be done by simply reversing the process by putting back the
weights to return the gas along the route cba. But this would exactly use up all the work
that had been gained. It is clear that some work must be done to get back to a, but this
need not be as much as was gained.

The procedure is as follows. At c, thermal contact is established with a heat reservoir,
the refrigerator, whose temperature Tlow is just below that of the gas and correspondingly
significantly lower than that of the furnace. The remaining weights are sufficient, bit by
bit, to compress the gas in the cylinder and change the state of the gas isothermally along
cd. The important thing is that less work is needed to compress the colder gas under the
conditions on cd than the hotter gas on ba. A glance at the figure shows that the pressure
on the route back is at every stage lower than on the route out. This is the essential reason
why a positive amount of work can be done during the cycle.

The final stage of the return cycle is again adiabatic: the gas is compressed along da and
brought back to its original state. The steam engine can continue its labour.

Clapeyron’s figure has two great virtues: first, it’s a wonderfully transparent representa-
tion of the process. Second, the area enclosed by the closed cycle abcda measures the net
amount of work that has been done. A particularly nice feature of the cycle is that it can
be run through in the reverse order: adcba. When this is done, work is expended to take
heat from the refrigerator and transfer it to the furnace. This demonstrates the perfect re-
versibility of the Carnot cycle. Moreover, it is clear from the figure that the amount of work
done depends on the two temperatures Thigh and Tlow. Neither Carnot nor Clapeyron could
determine its quantity because, in contrast to the isotherms ab and bc, they did not know
the form of the adiabats bc and da. As regards the temperatures for which heat engines can
be operated, the properties of the furnace and the working medium fix Thigh, while Tlow is
effectively that of water at the ambient air temperature (typically around 20◦C). These two
temperatures fix the optimal cycle that in practice is possible.

I should emphasise that that my description in terms of heat flow corresponds to modern
understanding. Both Carnot and Clausius thought in terms of the weighless, invisible and
indestructible caloric. They supposed that in the section ab caloric flowed into the gas,
causing it to expand. In the section bc the amount of added caloric, being indestructible,
did not change. In the section cd all the caloric gained in ab passed, in their view, into the

4A coining in the late 19th century from Greek: a- (not) + dia (through) + batos (passable)
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refrigerator causing its medium to expand but not get hotter.
This was a false conclusion but ironic; if Carnot had made an experiment to check for a

temperature rise he wouldn’t have found one. This is because a remarkably small amount
of heat corresponds to a lot of work. It was about 40 years from Carnot’s publication before
improvement in experimental accuracy permitted a temperature rise in the refrigerator to
be measured.

Fortunately, the incorrect notion of caloric did virtually nothing to reduce the value
of Carnot’s study. His observation that his idealized heat engine could be run in either
direction was most important. Carnot said that in the forward, work-performing cycle
caloric is transformed from the furnace to the refrigerator; in the reverse cycle the caloric
is transferred back from the refrigerator to the furnace. We recall his words that motive
power is due “not to actual consumption of caloric, but to its transportation from a warm
body to a cold body.” The analogy with a waterfall, in which work really is done without any
consumption of water, made this conclusion very plausible.

Carnot drew two key conclusions from his theory of idealized heat engines. Both were
correct despite the false belief in caloric. In modern terms, the first was that not all of the
heat suplied in a heat engine can be used to do useful work. Some inevitably finishes up in
the cold reservoir (the condenser in a steam-engine). The correct deduction of this result
when the notion of caloric was abandoned did not lead to any significant new idea. Quite
different was what happened as a result of the correction of Carnot’s second conclusion. This
was that, no matter what working medium one used, all heat engines would give exactly the
same maximal efficiency. This is Carnot’s argument:

Now if there existed any means of using heat preferable to those which we have em-
ployed, that is, if it were possible by any method whatever to make the caloric produce
a quantity of motive power greater than we have made it produce by our first series of
operations, it would suffice to divert a portion of this power in order by the method just
indicated to make the caloric of the body B to return to the body A from the refriger-
ator to the furnace, to restore the initial conditions, and thus to be ready to commence
again an operation precisely similar to the former, and so on: this would be not only
perpetual motion, but an unlimited creation of motive power without consumption of
caloric or any other agent whatsoever. Such a creation is entirely contrary to ideas now
accepted, to the laws of mechanics and of sound physics. It is inadmissible. We should
therefore conclude that the maximum of motive power resulting from the employment
of steam is also the maximum of motive power realizable by any means whatever.

The search for perpetual-motion machines had long been a dream of mankind, but by
Carnot’s time repeated debunking of charlatans’ claims to have created them had persuaded
scientists their non-existence was a deep principle of nature. Given his belief in indestructible
caloric, Carnot’s argument is impeccable. Once the notion of caloric was abandoned, a
subtle move that modified his argument but retained his conclusion led to the second law of
thermodynamics. The revised argument is impregnable—only the creation of a perpetual-
motion machine could break down its defences. I think this is a main reason why the
claim, first made by Rudolf Clausius and to which we will come, that the entropy of the
universe tends to a maximum is so widely accepted. Since I question the application of
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standard thermodynamic arguments to the universe (though, to be clear, not to systems like
steam engines), to conclude this chapter I will highlight those aspects of Carnot’s work that,
brilliant in their context, nevertheless may be less helpful outside it.

For a start there’s the remarkable robustness of Carnot’s principles. In fact he created
almost the entire conceptual framework of thermodynamics. It’s as secure now as when he
published his booklet in 1824. One way to see that, for the reader who acquires Carnot’s
booklet, is to follow it up with Thermodynamics by the Nobel Laureate Enrico Fermi (1901-
1954) given as a lecture series in 1936. 5 The opening chapter defines a thermodynamic
system. This core concept comes straight from Carnot’s book: in the typical case it’s a
confined ideal gas whose pressure P , volume V and temperature T can be changed from
without in infinitesimal reversible transformations through a succession of equilibrium states.
These can take the system from an initial state A to a final state B but also, in a cycle, back
from B to A. The work done in such a case is the area enclosed, as in Fig. 1, within the plot
of P against V . It’s pure Carnot. It should however be noted that thermodynamic systems
are extreme idealizations. They don’t exist in the universe.

Perhaps the greatest tribute to his work was something that Einstein, near the end of
his life, said of thermodynamics: “It is the only physical theory of universal content which
I am convinced that, within the framework of applicability of its basic concepts, will never
be overthrown.” Most of those basic concepts are Carnot’s. However, note Einstein’s caveat
‘within the framework of applicability’. That will be critical later, but some things can be
said now.

Besides the point about confinement in a box already made, it’s worth noting that the
interaction of thermodynamic systems with their environment is very ‘one-sided’. By and
large, things are done to them. They are not entirely passive but they cannot ‘do their own
thing’. They are reactive. The key concept of entropy can be defined for thermodynamic
systems in large part because they can be confined and controlled. Who can do that for the
universe?

I also find it relevant that a thermodynamic system is the acme of idealization. With the
possible exception of black holes, whose behaviour (discussed in The Janus Point) follows the
background arrow but does not seem to determine it, nothing remotely like thermodynamic
systems exist in natural form in the universe. They can be realized in a good approximation
for a long time in a laboratory, but in the pure form they exist only on paper and in the brains
of theoreticians. And in those brains, as extensive reading of the professional and popular-
science literature on time’s arrows demonstrates, they do keep much thinking ‘inside the
box’.

I noted earlier that Carnot’s “sufficiently general point of view” was effective precisely
because it was simultaneously circumscribed to “the production of motion by heat”. For
very good reasons, Carnot made no attempt—it would have been hopeless if he had—to
ask how it can be that hot and cold, the sine qua non for motive power, exist around us
simultaneously. He would have faced a never ending series of questions relating, among
other things, to the origin of the earth and its coal-bearing seams, the benificent sun that
stimulates the growth of trees and the food that provides the fireman with the energy to
shovel coal into the firebox, and so on. In short, it would have forced him to understand

5Both books are available online in pdf format.
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the universe and its history. In fact, he did mention the universe just once, in a footnote in
which he says a hypothetical perpetual machine would be

capable of creating motive power in unlimited quantity, capable of starting from rest
all the bodies of nature if they should be found in that condition, of overcoming their
inertia; capable, finally, of finding in itself the forces necessary to move the whole
universe, to prolong, to accelerate incessently its motion.

This calls up the quaint image of a machine ‘pushing the whole universe’ into ever faster
motion. The picture I present in the Janus point is quite different—that of a universe, freed
from a box, in which its parts move relative to each other. That doesn’t make any of the
parts into perpetual-motion machines, but it does open up interesting possibilities.

Related to this is another key aspect of thermodynamics inherited from the working of
steam engines: the need to keep on bringing the working medium back to its initial state.
This is the origin of the cycles that Fermi mentions. As we will see, they were crucial for the
discovery of entropy in confined systems. But this raises a question if we want to define an
entropy of the universe. For we certainly cannot bring it back to any earlier state. It seems
determined to go its own way in eternal expansion. This may cast some doubt on the idea
that the uinverse, at any instant, has a definite, and increasing, entropy.

Another thing is this. Carnot is renowned for observing that heat engines never operate
at 100% efficiency. But why? It is their continuous operation. The working medium must,
again and again, be brought back to its initial state, point a in Fig. 1. But in a single use
one could stop at b. Then the heat would have done nothing but work. The wastage only
comes through the recycling.

Carnot’s viewpoint is antropocentric. His vision is all-encompassing, but his acuity is
directed to the needs of mankind. His aim is to make the steam engine maximally efficient.
He did not seek to understand the origin of coal but to maximize its utility. Too concerned
with human needs, he may have missed the most important thing.

What is that, divorced from our mundane concerns, steam engines actually do? They
lift coal from the depths of mines to the surface of the earth. In doing this, they change the
shape of the universe.

14



3 The Mechanical Equivalent of Heat

The man known to science as Count Rumford was the American Benjamin Thompson (1753-
1814). He was talented but had little success until he married a rich heiress who had inherited
a property in Rumford (now Concord) in New Hampshire. Because he sided with the British
in the Revolutionary War, he had to flee, abandoning his wife. He moved to London and
became a British citizen knighted for his administrative talents. In 1784 he moved to Bavaria,
where he was made the Army Minister and, in 1791, a Count of the Holy Roman Empire. In
Bavaria, he did many admirable things, including the invention of Rumford’s Soup for the
poor and the introduction of potato cultivation. In 1789, he created, on behalf of the ruler
of Bavaria, the magnificent Englischer Garten in Munich, one of the largest urban parks in
the world. I personally, like millions more, am very grateful to him for that. In the time
when I lived and studied in Munich from 1961 to 1966, I walked or bicycled through the
park almost every day. It was in Munich that Rumford made the experiments which should
have spelled the demise of caloric and spared Carnot his one mistake but somehow made
little or no impact.

In 1798, Rumford published his paper “An Experimental Enquiry Concerning the Source
of the Heat which is Excited by Friction” in the august Philosophical Transactions of the
Royal Society of London. A German translation appeared at the same time. The paper
gives a vivid impression of the man and is a beautiful example of a chance observation that,
followed up, can lead to profound insights. He was overseeing work in the arsenal in Munich 6

and was

amazed at the considerable heat that quickly appeared in a brass cannon during drilling
and by the even greater heat of the splinters created by the drilling, which I found to be
much greater than that of boiling water. The more I thought about these phenomena,
the more remarkable and interesting they appeared to me. A thorough investigation
of them even seemed to promise a deep insight into the hidden nature of heat and to
enable us make a sensible conjecture about the existence or nonexistence of a fiery fluid,
about which the opinions of natural philosophers have at all times been so divided.

Rumford was clearly a first rate experimentalist. He used two horses to turn a brass
six-pounder against a blunt borer to create maximum friction and much heat. Bystanders
were astonished “to see how, without fire, such a quantity of cold water could be heated and
even brought to boiling.” When drilling recommenced after a pause, just as much heat could
be generated. Being manifestly inexhaustible, the heat excited by the friction “could not
possibly be a material substance”. There was also no sign of any chemical transformation;
that too was ruled out as the heat source. Rumford quantified the effect of friction: the work
of one horse during two and a half hours was sufficient to raise through 180◦ Fahrenheit 26.58
pounds of water. One pound heated by one degree was therefore “equivalent to 940 British
units of work”.

The great question was therefore the one that “has so often occupied the natural philoso-
phers: What is heat? Is there a fiery fluid? Does there exist something that can actually be

6The site and its significance is marked by a plaque not far from the Chinese Tower in the Englischer
Garten.
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called heat substance?” Having shown that the heat excited by the friction is inexhaustible
and could not possibly be a material substance, Rumford concluded: “It must therefore
be motion.” He made no conjectures about its precise nature, as heat “is a subject that
scientists and philosophers have for so many thousands of years been vainly attempting to
comprehend.” But he did argue for the methods of science. Even if one cannot penetrate to
the innermost depths of nature’s workings, quantitative description of what one can observe
guided by intuition of what might lie behind appearances can still take one very far.

How was it that, despite Rumford’s experiments, the notion of caloric survived for half
a century? Rumford had ample opportunity to make his discovery known. From 1799 to
his death in 1814 he divided his time between Paris 7 and London, where he surely took
part in many scientific discussions. Indeed, he and Sir Joseph Banks established the Royal
Institution of Great Britain in 1799 with Sir Humphry Davy as the first lecturer.8 In 1799,
Davy reported an experiment in which he had melted two pieces of ice by rubbing them
together, from which he concluded “The phenomena of repulsion are not dependent on a
peculiar elastic fluid for their existence, or caloric does not exist.” Thus, interaction with
Rumford may have stimulated Davy to his experiment.

The historian of science Stephen Brush, whose books have been a considerable help to me,
suggests that two factors may explain caloric’s longevity. First, the study of heat was only
one of many immensely exciting research topics in the first half of the 19th century, above
all those connected with chemistry and also electricity and magnetism. In 1820, Oersted
proved that an electric current could deflect a magnetic needle in its vicinity and in 1831
Faraday discovered electromagnetic induction. These discoveries pointed to a deep unity in
the phenomena of nature and, as a second explanation of the survival of caloric, encouraged
theories of underlying fluid-type mechanisms. Discoveries in the behaviour of light and
radiant heat suggested that they could be transverse (perpendicular to the direction of wave
propagation) vibrations in a fluid ether. By analogy, vibrations of caloric might still explain
heat.

Given the already widespread recognition that science advances in large part through
observation and measurement, it is still surprising that only in 1842 did the German Julius
Mayer (1814-1878) became the first person after Rumford to relate mechanical work to heat
quantitatively. He too was prompted by serendipity. As ship’s physician on a Dutch three-
master sailing to Jakarta in 1840, he noted that storm-whipped waves are warmer than calm
sea. He started to think for the first time about physical laws, but his ideas were inchoate
and largely expressed in terms redolent of medieval philosophy. However, he got help from
professionals, including a sceptical professor at his alma mater Tübingen, who told him to
shake water violently to prove that did actually increase its temperature. Mayer did do
that and reported a positive effect, but another paper which, as the first after Rumford’s,
established a value for what came to be known as the mechanical equivalent of heat, was

7One of the many strange facts about Rumford’s life was his second marriage, in 1804, to the widow of
the guillotined Antoine Lavoisier.

8The institution flourished and became world renowned as a result of Davy’s pioneering research. His as-
sistant Michael Faraday greatly strengthened the Institution as a premier research laboratory. The tradition
of his famous public lectures popularizing science continues to the present; the Royal Institution Christmas
lectures attract large audiences through their TV broadcasts.
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not based on actual measurements. It relied instead on an indirect argument related to
the difference between the amounts of heat taken up by gases under conditions of constant
volume or constant pressure.

Mayer’s paper did not attract much early interest and I won’t discuss it further because
it was of much less quality and influence than results obtained by James Joule (1818-1889).
He lived in Manchester, which at that time was the greatest industrial city in the world,
attracting no less a person than Friedrich Engels to write there his famous 1845 book The
Condition of the Working Class in England. Joule was the son of a wealthy brewer and as
an adult his ‘day job’ was managing the brewery. Physics was a passionate hobby. He had
been tutored as a boy by the great scientist John Dalton and, with his brother, developed
a fascination for electricity. He and his brother used to give each other—and servants—
electric shocks. He investigated the possibility that steam engines in the brewery could
be replaced by electric motors, whose recent invention had followed Faraday’s discovery of
electromagnetic induction. Moreover, he was able to draw on the superb engineering skills
available in Manchester for the construction of the exquisitely accurate apparatus used in
his many important experiments.

Having the advantage of this expertise and his knowledge, both theoretical and practi-
cal, Joule was able to go far beyond Mayer in performing important experiments involving
generation of heat not only by friction but also by electricity and magnetism. He performed
direct experiments and published their results beginning with one in 1843. Joule’s scientific
papers were brief, the epitome of clarity and entirely free of Mayer’s wordy philosophy. In his
1843 paper, he said “I shall lose no time in repeating and extending these experiments, being
satisfied that the grand agents of nature are indestructible and that wherever mechanical
force is expended, an exact equivalent of heat is always obtained.”

Joule’s most famous paper, of 1845, is a wonderful example of what can come of the
simplest idea. He made the experiment that Mayer did not. He measured not only the
rise in temperature but also the amount of ‘violent shaking’ that caused it. His apparatus
consisted of a brass paddle-wheel working horizontally in a can of water. Motion could be
communicated to this paddle by means of weights on pulleys. The paddle moved with great
resistance in the water, so that the weights (each of four pounds) descended slowly at about
one foot per second. The height of the pulleys from the ground was twelve yards. Joule
rewound the pulley 16 times. His measurement of the resulting temperature increase led
him to the conclusion that

for each degree of heat evolved by the friction of water, a mechanical power equal to that
which can raise a weight of 890 lbs to the height of one foot, had been expended. Any
of your readers who are so fortunate as to reside amid the romantic scenery of Wales
or Scotland, could, I doubt not, confirm my experiments by trying the temperature of
the water at the top and at the bottom of a cascade. If my views be correct, a fall of
817 feet will of course generate one degree of heat; and the temperature of the river
Niagara will be raised about one-fifth of a degree by its fall of 160 feet.9

Discussing other experiments made with air, Joule said that they “are inexplicable if
heat be a substance but are, however, such as might have been deduced à priori from any

9In 1847, Joule went to the Niagara Falls with his wife on their honeymoon and made the appropriate
measurement.
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theory in which heat is regarded as a state of motion among the constituent particles of
bodies.” That the experiments of Rumford and Davy had not gone completely unnoticed
is clear from Joule’s further comment that his experiments “afford a new, and to my mind,
powerful argument in favour of the dynamical theory of heat which originated with Bacon,
Newton, and Boyle, and has been at a later period so well supported by the experiments of
Rumford, Davy, and Forbes.”

Joule concluded that “an enormous quantity of vis viva exists in matter” (vis viva was
the expression then used for the energy associated with motion). In fact, Joule identified
something that greatly affects our everyday lives, including the cost of heating our homes.
What feels to us a very modest increase in warmth results from a great amount of mechanical
energy (a fifth of a degree for the fall at Niagara). It is also disappointingly difficult to work
off calories, which measure energy. The consolation is that a gallon of fuel in the automobile
tank will take us a good long way. The mechanical equivalent of heat is the reason why
Carnot could not have disproved the caloric theory by direct measurement with the accuracy
he could have employed.

Not surprisingly, after a delay of five years, Joule’s clearly written papers attracted far
more attention than Mayer’s verbose papers and are the reason why Joule, after whom a
unit of energy is named, gained nearly all of the early credit for establishing the equivalence
of heat and mechanical energy. The unfortunate Mayer was distraught when he discovered
Joule had gained the credit. This and the death of two of his children in 1848 caused Mayer’s
mental health to deteriorate rapidly and in 1850 he attempted suicide. He was committed
to a mental institution, from which he emerged a broken man. He achievement was at least
recognized while he was still alive.

Joule, for his part, was in no doubt as to the significance of his work. He gave a popular
lecture that appeared in the Manchester Courier in May of 1847. It brims with the confidence
of a man who knows his experiments are helping to reveal the inner workings of nature and
God’s control of them. He argues that living force (vis viva) “is one of the most important
qualities with which matter can be endowed, and, as such, that it would be absurd to suppose
it can be destroyed”. This is because “it is manifestly absurd to suppose that the powers
with which God has endowed matter can be destroyed any more than that they can be
created by man’s agency”.

Inviting his audience to behold “the wonderful arrangements of creation” Joule says that
“we find a vast variety of phenomena connected with the conversion of living force and heat
into one another, which speak in language which cannot be misunderstood of the wisdom
and benificence of the Great Architect of nature.” It is something we see “in our own animal
frames, ‘fearfully and wonderfully made’.” Indeed,

the phenomena of nature, whether mechanical, chemical, or vital, consist almost en-
tirely in a continual conversion of attraction through space, living force, and heat into
one another. Thus it is that order is maintained in the universe—nothing is deranged,
nothing ever lost, but the entire machinery, complicated as it is, works smoothly and
harmoniously. And though, as in the awful vision of Ezekiel, “wheel may be in the
middle of wheel,” and everything may appear complicated and in the apparent confu-
sion of an almost endless variety of causes, effects, conversions, and arrangements, yet
is the most perfect regularity preserved—the whole being governed by the sovereign

18



will of God.

Coming back down to earth, it’s a nice thought that caloric came into science through
an adviser to whisky distillers and went out through the efforts of a brewer.
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4 The Conservation of Energy

Galileo initiated much in science. His vision was remarkable. In 1623 he wrote

Philosophy is written in this immense book that stands ever open before our eyes (I
speak of the Universe), but it cannot be read if one does not first learn the language
and recognize the characters in which it is written. It is written in mathematical
language, and the characters are triangles, circles and other geometrical figures, without
the means of which it is humanly impossible to understand a word; without these
philosophy is a confused wandering in a dark labyrinth.

.
His final book, smuggled out of Italy and printed at Leiden in 1638, contained something

he had found many years earlier by rolling balls down gently inclined planes and using the
amount of water flowing out of a tank to measure time: if the unit of distance traversed in
the first unit of time is 1, in the next it will be 3, in the next 5, and so on. Galileo called
this the odd-numbers rule. It was the first ‘sentence’ he had read in the immense book.

Galileo writes with rare confidence. Shortly after his statement of the odd-numbers rule
he says

It has been observed that missiles and projectiles describe a curved path of some sort;
however no one has pointed out the fact that this path is a parabola. But this and
other facts, not few in number or less worth knowing, I have succeeded in proving;
and what I consider more important, there have been opened up to this vast and most
excellent science, of which my work is merely the beginning, ways and means by which
other minds more acute than mine will explore its remote corners.

Some prophecy. Not a day passes now without another corner being explored. And
surprises follow surprises, big and small.

Because free fall—of Newton’s apple from the tree to the ground—would have been over
too soon for Galileo to time, he invoked for it an indirect argument. It involved a pendulum
and the argument you will find in the caption of Fig. 2. For my immediate purposes I don’t
need to give the steps from it to Galileo’s law of free fall, which in its turn was a vital for
Newton’s great discoveries published in his Mathematical Principles of Natural Philosophy
in 1687.10 All I need is the pendulum argument, to which I will return a little later.

The key point is that, wherever a pin E or F is placed to thwart the full swing, the
speed at B is always the same and the subsequent height of ascent after the passage through
B is always the same. The same speed at B always allows the bob to climb to the same
height. Having made this point, Galileo says there’s no need to “trouble ourselves too much”
about the matter of the pendulum. As we will see, it’s an ironic comment. A little over two
centuries later the phenomenon Galileo described was at the heart of physics and helped to
usher in the principle that energy is conserved.

I might as well be anachronistic and anticipate the form the principle takes for the
pendulum when expressed in modern terms. Suppose the bob has mass m, the thread to

10For a detailed account, see my The Discovery of Dynamics.
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Without air resistance, the bob released at
C would swing exactly up to D at the same
height. A pin stuck in the backing bord at E
or F would change the swing to G or I, both
at the same height on CD. Imagining a
mathematical ideal, here without friction, is
a defining characteristic of the new science
Galileo introduced.

Figure 2: Galileo’s pendulum.

which it is attached is massless and the force of gravity is g. Suppose that at any instant
the speed of the bob is v. Then its kinetic energy, T , is mv2/2. Without the factor 1/2, T
is the vis viva, or living force,11 referred to by Joule. In the gravitational field of the earth,
the bob also has potential energy, V , which is equal to mgh, where h is the height above
some nominal level and g the force of the earth’s gravity. The fact that h is measured from
some nominal value does not affect the statement of energy conservation, as I will explain in
a moment. For simplicity let us first measure the height of the bob from point B in Fig. 2.
Then in accordance with the principle of energy conservation, the total energy, E, is equal
to

E = T + V =
1

2
mv2 +mgh (1)

and has the constant value E at all points of the motion. At B, the lowest point of the bob,
mgh = 0 and all the energy is kinetic. At the highest point, anywhere on the line CD, the
bob has come to rest and there is no kinetic energy. All the energy has become potential. In
fact, I have not yet said anything of physical significance. If I had defined the kinetic energy
T in any way such that T = 0 when v = 0 and the potential energy equally arbitrarily but
so that it vanishes when h = 0, i.e., at B, the same statement would hold. The principle of
energy conservation has real meaning because for all actual motions in which friction can be
ignored the relation holds at all instants of the motion. In the swinging pendulum, there’s a
constant to and fro of energy passing back and forth between its two forms. If you change
the reference height by adding the constant c to h then the right hand side of (1) becomes

1

2
mv2 +mg(h+ c) =

1

2
mv2 +mgh+mgc,

and since mgc is constant the constancy of the first two terms on the right is unaffected.
Suspecting that the secret of the conservation law (1) might be found within his pendulum

argument was clearly beyond Galileo’s ken and perhaps his ability to prove it. For over a
century his diagram remained, like the suspension pin at A and the whole diagram, the tip
of an iceberg below which much lay hidden. The first person to recognize its significance
was the Dutchman Christiaan Huygens.

11Vis viva is an expression that Leibniz coined to reflect his belief in a universal vital force.
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However, before I come to him I need describe another insight of Galileo that Huygens
put together with the pendulum observation to draw an almost magical conclusion. The
insight concerns Galileo’s defence of the Copernican revolution.

The main thing about that was the motion around the sun that Copernicus attributed to
the earth. That opened the door onto a new world. However, a secondary motion, seemingly
less important, was forced upon Copernicus as a kind of corollary: in order to explain the
observed diurnal sweep of the stars over the sky, the earth must spin on its axis, rotating once
in 24 hours. Despite its secondary role, this postulated further motion also had momentous
consequences. For about a century after Copernicus had published his book in 1543, many
(if not most) educated people mocked his ideas as ridiculous. People said that things on
a spinning earth just could not keep up with the colossal speed of the earth’s surface as it
revolved eastward. Church steeples would fall over backwards to the west, gales from east
to west would howl past us, life would be impossible. The earth simply could not rotate at
that speed.

One argument put forward, allegedly based on actual observation, was this. Suppose a
ship at anchor in harbour. If somebody climbs the main-mast carrying a cannon ball and,
from near the top, drops it, then, as is well known, it will hit the deck exactly next to the foot
of the mast. Now suppose the same experiment is made when the ship is sailing smoothly at
sea. In this case, it was argued, the cannon ball would not land at the foot of the mast but
at some distance toward the stern, the distance being greater, the greater the ship’s speed.
Everybody believed this.

In 1632, Galileo published his Dialogue Concerning the Two Chief World Systems, which,
as is well known, brought down upon him the wrath of the Inquisition. In his book, Galileo
stated categorically that this claimed experimental fact was simply false. He said that,
without even performing the experiment, he knew for certain that if performed when the
ship is either under sail (if moving smoothly) or anchored in harbour the cannon ball would,
in both cases, land at the foot of the mast. The first recorded test of Galileo’s experiment
was carried out in the harbour in Marseille in 1640, eight years after the Dialogue had been
published. Galileo was totally vindicated. People also realized the experiment could be
tested on horseback. Horsemen would ride at high speed holding a cannon ball in their hand
and let it fall. Until it hit the ground, the rider could see the ball fall vertically below the
hand from which it had been released. Experiences like that created a stir.12

12I cannot resist recalling two experiences I had about 350 years after Galileo had made his prediction.
They brought home the difficulty his contemporaries had in accepting its truth. In the first I was on an
express train in Lombardy heading at high speed from Milan to Venice and had cause to visit the toilet. You
lifted the seat and found a verticle tube with diameter of about 10 cm open to the track, which thundered
past a metre below its end. Men cannot resist aiming; my urine fell in a perfectly perpendicular stream
until it reached the opening and was torn away in the direction to the back of the train; the stability of the
fall seemed impossible given the speed of the train. People still find such experiences hard to accept. A few
years later I flew to New York and with a random group of people was taken from JFK in a commercial
minibus to New Haven to visit Lee Smolin, who was then at Yale. Hearing I was a theoretical physicist, the
man next to me, with whom I had got into discussion, said there must be something wrong with the way the
universe worked. On the flight, he had been to the restroom and while waiting for the current occupant had
done a little test by making a small jump.“There’s got to be something wrong. That 747 was doing close on
600 miles in an hour. By rights, when I made that jump, I should have been shot clean out the back of the
plane.”
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To persuade people that the earth could be rotating at high speed without church steeples
falling down westwards, Galileo gave a famous argument that encompassed not only falling
cannon balls but all natural processes. He identified a universal phenomenon. I give the
relevant passage from the Dialogue in full; it’s a gem:

Shut yourself up with some friend in the main cabin below decks on some large ship
and have with you there some flies, butterflies, and some other small flying animals.
Have a large bowl of water with some fish in it; hang up a bottle that empties drop
by drop into a wide vessel below it. With the ship standing still, observe carefully
how the little animals fly with equal speed to all sides of the cabin. The fish swim
indifferently in all directions; the drops fall into the vessel beneath; and, in throwing
something to your friend, you need throw it no more strongly in one direction than
another, the distances being equal; jumping with your feet together, you pass equal
spaces in every direction. When you have observed all these things carefully (though
there is no doubt that when the ship is standing still everything must happen in this
way), have the ship proceed with any speed you like, so long as the motion is uniform
and not fluctuating this way and that. You will discover not the least change in all the
effects named, nor could you tell from any of them whether the ship was moving or
standing still. In jumping, you will pass on the floor the same spaces as before, nor will
you make longer jumps toward the stern than toward the prow even though the ship is
moving quite rapidly, despite the fact that during the time you are in the air the floor
under you will be going in a direction opposite to your jump. In throwing something
to your companion, you will need no more force to get it to him whether he is in the
direction of the bow or the stern, with you situated opposite. The droplets will fall as
before into the vessel beneath without dropping toward the stern, although while the
drops are in the air the ship runs many spans. The fish in the water will swim toward
the front of the bowl with no more effort than toward the back, and will go with equal
ease to bait placed anywhere around the edges of the bowl. Finally, the butterflies and
flies will continue their flights indifferently toward every side, not will it ever happen
that they are concentrated toward the stern, as if tired out from keeping up with the
course of the ship, from which they will have been separated during long intervals by
keeping themselves in the air. And if smoke is made by burning some incense, it will be
seen going up in the form of a little cloud, remaining still and moving no more toward
one side than the other. The cause of all these correspondences of effects is the fact
that the ship’s motion is common to all the things contained in it, and to the air in it.

Two and a half centuries after Galileo’s Dialogue had been published, his cabin cameo
led to the notion of an inertial frame of reference. It reflects the fact that observers in the
cabin and on the quayside in Marseille would see processes unfolding in the cabin governed
by identical laws. However, this would not be so for seagulls circling the ship. Motions that
appeared unaccelerated in the cabin would appear accelerated to them. Most textbooks
on dynamics define an inertial frame of reference as one in which Newton’s laws hold.13 If
they hold in one such frame, they will hold in any frame moving relative to it with uniform
velocity. This is the famous relativity principle, called Galilean relativity on account of the

13In fact, this ‘dodges’ a foundational issue in dynamics: what determines the inertial frames of reference?
I will return to this at the end of this chapter; see also Chapter 8 of The Janus Point.
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above passage and is supposed to apply to purely mechanical phenomena whereas Einstein
extended the principle to include light and all electromagnetic phenomena in the famous
paper in 1905 that led him to the many remarkable predictions concerning the behaviour
of clocks and measuring rods for which he is so famous, including the equation E = mc2. 14

I won’t discuss Einstein’s predictions here because my immediate concern is with a much
earlier use of the relativity principle that bears directly on the mechanical interpretation of
the laws of thermodynamics that followed soon after their formulation.

But first we must see what happened when Christiaan Huygens (1629-95), the greatest
scientist between Galileo and Newton, contemplated the significance of Galileo’s pendulum
observation in conjunction with the relativity principle.

One of Huygens’s many achievements was the discovery with his brother of Saturn’s rings.
Much more significantly, he played a crucial role in the development of the pendulum clock
in 1656. This marked an important advance in the accuracy of time keeping. It’s a curious
fact—an example of a prophet not recognized in his own country—that Christiaan is hardly
known in his native Holland. He is eclipsed by his father Constantijn, who was an important
diplomat and admired poet. Constantijn also influenced Dutch architecture by building, in
classicist style, his moated summer home Hofwijck near Den Haag. Christiaan inherited the
house, which is now a museum. The Dutch visit it mainly on account of Constantijn but, as
I learned from the curator,15 most foreigners come because of their interest in his son.

In this chapter, I’m going to describe Huygens’ discovery of the laws of elastic collision
that underlie billiards and snooker. This beautiful work made critical use of Galileo’s rela-
tivity principle and was done at about the same time as the work on the pendulum clock.
It predated by 250 years the conclusions that Einstein, using the same principle, made so
famous through his creation of the theory of special relativity. In a way, Huygens’ insights
were just as important, especially in the theoretical interpretation of the first and second
laws of thermodynamics. This is why I discuss them now. However, Huygens’ discoveries,
though they greatly impressed his contempories, don’t catch the modern imagination since
they did not overturn beliefs about the nature of space and time taken for granted from
time immemorial. You have to go back to Joule’s article in the Manchester Courier and
the decade 1840 to 1850, in which the principle of conservation of energy was discovered, to
sense the impression Huygens’s work made.

The background to it that I’m going to describe are claims that Descartes (1596-1650)
made. At the age of 14, the precocious Huygens met the famous philosopher, who was

14 I say ‘supposed’ because Einstein’s extension is already implicit in Galileo’s famous text. It’s clear that
he is thinking in universal terms and not just in effects manifested mechanically. Indeed, some flint would
need to be struck to light the incense that is then “seen going up in the form of a little cloud”. Moreover,
Galileo did make a sophisticated but unsuccessful attempt to measure the speed of light. We now know
that the movements of all animals rely critically on electrical processes in muscles. Galileo would surely, if
pressed, have said his relativity principle must include all physical processes yet to be discovered. Otherwise
his defence of the Copernican revolution would fail.

15 Readers may like to view the film Killing Time, beautifully made by Dutch TV in the autumn of 1999.
It’s about the ideas I had just published in The End of Time. The film opens with a shot of me walking
along the bank of the moat at Hofwijck; my arguments about the nature of time are presented in the hall of
the house. I had the honour of being able to put forward objections to Newton’s notions of absolute space
and time much like the ones Huygens may well have formulated while reading Newton’s The Mathematical
Principles of Natural Philosophy in that very same room.
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keeping safely out of reach of the Inquisition in Holland. Huygens greatly admired Descartes
for the introduction of the mechanical theory of the universe. According to it, there is
nothing in the universe but pieces of matter moving about in all possible ways in infinite
space. In his influential Principles of Philosophy published in 1644, Descartes claimed to
know the laws that would govern collisions between such pieces of matter.

The theory captured the imagination of Huygens, but he realized Descartes’ laws were
wrong in part and set out to find the correct ones. The simplest laws govern what happens
when two identical perfectly elastic billiard balls collide. Much more subtle are the ones that
govern the collision of balls that are not identical, having different masses.16 These laws are
important for this book since, first, they were the basis of the mechanical theory of heat and
the attempts to understand the true nature of entropy.

Huygens began his considerations, which were almost entirely theoretical, by asking what
one should expect to happen if two identical balls collided head on with equal but opposite
speeds. The symmetry of the situation strongly suggests the only possible answer: the balls
would spring back from each other with the magnitude of their pre-collision velocities un-
changed but directions reversed. Although billiards had been played for about two centuries,
perfectly symmetric collisions do not generally occur in the game, so perhaps Huygens’ cor-
rect assumption had passed unnoticed. However, most people would surely have assented
to it if asked. It shares with Euclid’s axioms the appearance of self-evident truth. Anyway,
the symmetrical outcome, the simplest example of a time-reversal symmetric law, was the
hypothesis Huygens made.

He then asked this question: what happens if two identical balls meet head on with
unequal speeds? Here he could not invoke symmetry arguments. Instead, he used Galileo’s
cabin argument, transposed from a sailing ship in the Mediterranean to a boat on a river in
Holland. Galileo’s verbal skill was so great he had no need of pictures to make his points,
which were in fact about everyday actions familiar to children. Huygens was considering pre-
cise and rather abstract matters and clearly felt the need of pictures to make his points. His
De Motu Corporum (On the Motion of Bodies) published posthumously gives the deriva-
tion of results that he had simply stated in 1673 in his influential masterpiece, the book
Horologium Oscillatorum on pendulum clocks.

In his woodcut, which I reproduce from the book in Fig. 3, we see a man in the boat
holding two suspended balls. As the boat moves at uniform speed from right to left past the
man standing on the bank, the boatman brings the balls together with equal but opposite
speeds, −u and u, relative to his frame of reference, the boat. Huygens wishes to make it
clear that one should not think the collision takes place in the boat. It is not tied to the boat,
it could be regarded just as well as taking place on the bank. He makes this point as follows.
With outstretched arms, the man on the boat is initially holding the balls suspended at rest.
Exactly at the moment he comes opposite the man on the bank, the two link hands and
hold the strings jointly. The man on the boat moves his hands so that relative to it the balls
collide with equal and opposite speeds. For the man on the bank, who moves his hands with

16 The notion of mass only emerged with the work of Newton. Like his contemporaries, Huygens thought
in terms of the size of the bodies or also their weight. In one of his great insights, Newton realized that mass
and weight are not the same thing but that in any body they have a definite ratio determined by the local
strength of gravity. This fact later came to play a key role in Einstein’s theory of gravitation.
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Figure 3: Huygens’ woodcut with two men linking hands as the boat moves from right to left. The

balls cannot ‘know’ which man is causing them to collide.

those of the man on the boat, the balls collide with unequal speeds.
Now the balls clearly cannot ‘know’ which of the two men is causing them to collide. As

far as they are concerned, a single event is taking place: they are colliding head-on with a
certain relative velocity. The single event is being watched by two different observers—one
on the boat, the other on the bank.

Moreover, by Huygens’ original hypothesis, we know what would happen if the man on
the bank makes the balls collide with equal and opposite speeds. The balls must bounce
back with equal but opposite speeds relative to the bank. By Galilean relativity, that must
also happen if the balls are brought together with equal but opposite speeds relative to the
uniformly moving boat.

This argument leads to a prediction. Suppose the boat is moving to the left in the figure
with speed v relative to the bank. Then, seen from the bank, the unequal speeds before the
collision are

−u+ v and u+ v. (2)

By the relativity principle, we know that relative to the boat the balls spring back with equal
and opposite speeds. Therefore, seen from the bank the speeds after the collison are

u+ v and − u+ v. (3)

Huygens has been able to deduce, under the assumption that Galileo’s relativity principle
holds, what will happen in a collision with unequal speeds. Moreover, since the speed of the
boat is arbitrary, Huygens can use an assumption about one single collision together with
the relativity principle to predict what will happen in infinitely many: all those in which
the boat’s speed is varied from 0 to ∞. In fact, from (2) and (3) he can predict a two-fold
infinity of solutions, since the relative speed 2v with which the balls approach each other
can also range from 0 to ∞.

Huygens then attacks what looks like a much tougher problem. The original assumption
of a symmetrical bounce was so plausible because the balls were assumed to be identical, to
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have the same mass. But what will happen if the balls have unequal masses?
Before we continue, let me remind you of the concept of the centre of mass (or centre of

gravity), which is very familiar from the operation of a lever. If two weights of masses a and
b are placed either side of the fulcrum at distances x and y from it, then they will balance
if ax = by. Thus, if a is much less than b, there will still be balance if x is much greater
than y. This, of course, is how a small child can balance a parent on a see-saw and how a
great weight can be lifted with little effort provided the lever arm is adequate. The point
at which the condition ax = by holds is the centre of mass. It is defined with or without
a fulcrum. It can also be defined for any number of point masses distributed in space. At
the centre of mass, there is ‘balance’ about all three spatial directions when one adds up the
contributions of all the masses.

Let me now describe how Huygens solved the problem of unequal-mass collisions. This is
where my suggestion that the point of suspension of Galileo’s pendulum (Figure 2, p. 000) is
the tip of an iceberg starts to make sense. Huygens notes that the speed which the pendulum
bob has at its lowest point is always sufficient, provided air resistance and friction can be
ignored, to carry the bob up to the same height whatever the curve through which it swings.
Moreover, it cannot go any higher.

Huygens then supposes that two balls of unequal masses m1 and m2 are let fall from
heights h1 and h2, deflected into the horizontal with the acquired speeds u1 =

√
2gh1 and

u2 =
√

2gh2 (g is the acceleration due to gravity), allowed to collide and then to ascend
inclined planes to heights h̄1 and h̄2, where they are held. The new heights will not be the
same as the initial heights since the speeds will have been changed by the collision.

Huygens then makes the assumption that the centre of gravity of the two balls is not
higher than it was at the start of process. For if it were, one could make a perpetual motion
machine: by lowering the weights to their original heights, one could raise other weights by
a certain amount. Repeating the collision process from the new position and again coming
to a state in which the post-collison centre of gravity was higher, one could do further lifting
work and so ad infinitum. Huygens resolved another mechanical problem by the same kind
of argument in Horologium Oscillatorum and with it caused a considerable stir. People
began to realise that the ancient dream of a perpetual motion machine could not be realized.
One cannot get something for nothing. Huygens’s deductions, together with all the failed
attempts to build perpetual-motion machines, were the background to Carnot’s invocation
of their non-existence in laying the foundation of his theory of steam engines. We have yet
to see, in the next chapter, the modification of Carnot’s argument that led to the second law
of thermodynamics.

In fact, Huygens did anticipate the first law, which says that energy is conserved, by
making a more precise assumption suggested by Galileo’s observation of what happens with
the pendulum. Its bob ascends to the height from which it had fallen. Huygens, making the
kind of idealization that is so characteristic of great theoretical advances, assumed that, in
the absence of friction and air resistance, the centre of gravity would reascend to exactly its
original height. Unlike the behaviour of the bob, which a child can see and grasp without
difficulty, this extension is far reaching. It involves observation of two balls and calculations
that few adults would care to undertake. Although the extension is guided by a clear idea,
one is dealing with something much less obvious. It’s worth mentioning that we have here a
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classic example of the power that the simplest possible insights have in science. One starts
with the bare minimum: a single body and a transparent process. From it, one hypothesizes
by extension a law that governs two, three, four ... indeed any finite number of bodies. It is
this organizing and controlling principle that Joule called “the powers with which God has
endowed matter” so that “order is maintained in the universe—nothing is deranged, nothing
ever lost”.

It’s worth mentioning here that energy is often thought, even by some scientists, to be
some kind of indestructible substance not totally unlike caloric. Nothing could be further
from the truth. The principle of energy conservation is much more like a book keeping
rule. We saw that in the to and fro of Galileo’s pendulum. Energy is transferred back and
forth between the kinetic and work accounts. It’s rather like currrency exchange. You can
still buy the same number of oranges with euros or dollars. In fact, the hopefully modest
exchange charges you incur are rather like the effect of friction. Just as that generates heat,
the charges swell the profits of banks. As Joule said, “nothing is ever lost”.

Although they are relatively simple, I will spare you the calculations, but I have still to
tell you what were the laws of collision Huygens was able to deduce. They govern collisions
with arbitrary pre-collision speeds u1, u2 and are

m1u
2
1 +m2u

2
2 = m1v

2
1 +m2v

2
2 (4)

and
m1u1 +m2u2 = m1v1 +m2v2, (5)

where v1, v2 are the post-collision speeds. In the modern terms I already introduced in
equation (1) when discussing Galileo’s pendulum, the quantities in equation (4) quadratic
in the speeds, for example m1u

2
1, are, with the factor 1/2 added,17 the kinetic energies of the

particles. In Huygens time and long after, as I mentioned in footnote 11, one used for them
Leibniz’s expression vis viva (living force), which reflected his belief (long discarded by the
great majority of scientists) that the whole universe is animate. Since no potential energy
is present in (4), it is special form of energy conservation that holds when only (frictionless)
collisions are involved. The quantities linear in the speeds in (5) are the momenta of the
particles and the equation expresses the law of conservation of momentum.

It is truly remarkable that Huygens, using clear principles and such simple arguments,
deduced not one but two fundamental laws. The laws of conservation of energy and mo-
mentum are among the most important in science and will play a central role later in the
book.

They will do that in a form in which Huygens, in a further important result, identified
what one might call the intrinsic form of collisions. The basis for this was his proof that
the centre of mass of the two bodies moves uniformly throughout the motion: before, during
and after the collision. By the relativity principle, this means one can describe the collision
process in a frame of reference in which the centre of mass is at rest throughout. The
process then takes a particularly simple form: the two particles are always situated relative

17 The 1/2 has no physical significance. It was added for mathematical convenience soon after the laws of
thermodynamics were discovered so that the derivative of the kinetic energy with respect to v the same as
the magnitude of the momentum mv.
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Figure 4: Huygens’ disemboded hands.

to the centre of mass in the lever-balance position—at distances from the centre of mass in
inverse proportion to their masses. Their speeds must also be in inverse proportion. This
wonderfully simple picture of collisions remains right at the heart of modern physics. It is
the way collisions between elementary particles in the Large Hadron Collider in Geneva are
described.

The centre-of-mass description pares away everything that is not intrinsic to the collision.
As far as it is concerned, all information about whether the balls collide on a boat in Holland
or in a sailing ship in the harbour of Marseille is redundant. By a nice twist, other diagrams
in Huygens’ book on collisions illustrate this rather well but also the issue of the origin
of inertial frames that I mentioned in footnote 13. Huygens felt obliged to repeat several
times the point that the colliding balls could not possibly ‘know’ whether the man on the
boat or on the bank was causing them to collide. To save on the considerable expense of
complete fresh woodcuts (in a nice anticipation of modern data-compression techniques), his
subsequent diagrams showed just the interlocking hands of the two men and the suspended
balls (Figure 4). His first diagram was already a vignette—it showed nothing of the Dutch
landscape. The revised diagram vignettes much more drastically. The two balls are essential,
but all that otherwise remains are hands and strings.

But what role, if any, does the rest of the universe play in the collision? About this
Huygens says not a word. The earth clearly is involved. The river runs through Holland and
the balls must be suspended since otherwise they would fall to the ground. But these are
clearly incidentals.

We get a better idea of Huygens’ standpoint from the opening proposition of De Motu
Corporum: “When once a body has been set in motion, it will, if nothing opposes it, continue
that motion with the same speed in a straight line.” In a less precise form, this principle
had already been stated by Descartes. It became Newton’s first law of motion. But there’s
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a catch. How can we be sure anything is moving in a straight line with constant speed?
This is what Huygens says: “The motion of bodies and their speeds, uniform or nonuniform,
must be understood as relative to other bodies that are regarded as being at rest even if
these together with the others partake in a further common motion.”

But this is the start of an infinite regress. How are we to confirm that the further common
motion is uniform? We must invoke further ‘other bodies’ and so ad infinitum. Can we ever
stop? I’ll come back to this issue later in the book and propose a terminus, or rather a kind
of closing of the circle. I think this is important, being convinced that the explanation of
the arrows of time that we observe locally must be sought in the overall behaviour of the
universe. Even today, despite the development of sophisticated models of the universe, much
discussion of time’s arrows is restricted to what are called local freely falling frames, which
are the form taken by inertial frames in Einstein’s general theory of relativity.

I’ll round off this chapter by noting that the principle of energy conservation for purely
mechanical processes, including the distinction between potential and kinetic energy, became
properly established in the 1840s, especially through an influential paper in 1847 by Hermann
von Helmholtz. I have already given the expression for kinetic energy. It will help to give now
the expression for potential energy in the case of Newton’s law of universal gravitation. It’s
going to be important in the second half of the book. If N bodies of mass mi, i = 1, . . . , N,
that gravitate among themselves can each be regarded as mass points with distances rij
between each pair of them, their Newtonian gravitational potential energy is the negative of
the quantity obtained by adding togething all terms of the form

mimj

r12
(6)

for different unequal values of i and j. There are N(N − 1)/2 such terms and the total
Newtonian potential energy is expressed compactly in the form

VNew = −
∑
i<j

mimj

rij
. (7)

In Joule’s ecstatic article in the Manchester Courier, you may have wondered what he
meant by ‘attraction through space’. In fact, he was intuitively anticipating forces that can
be derived from an expression like (6) by differentiation with respect to the inter-particle
separation r12. In the case of gravity, this gives Newton’s famous force inversely proportional
to the square of the distance between the particles though Joule had in mind analogous
electric or magnetic forces.

It may be helpful to note that in the 1840s the modern distinction between force and
energy had not yet been established through clear definition of the terms force, kinetic energy
and potential energy. We are about to meet the man whom, before any others, we have to
thank for the clarification.
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5 The First Law of Thermodynamics

In the deeply religious Britain of the mid 19th century, not yet disturbed by Darwin’s book
of 1859, Joule’s vision, formalized in 1850 as the first law of thermodynamics, made a huge
and comforting impact. Two men were mainly responsible for this part of the story.

The first was the Scots–Irish William Thomson (1824-1907), who was born in Northern
Ireland. He was a remarkably prolific mathematical physicist and engineer, publishing sub-
stantial papers on a wide variety of topics at the rate of about one a fortnight from the early
1840s. Both he and his elder brother James, who became a distinguished engineer, were
coached and strongly supported by their father, who moved as a professor to Glasgow when
William was eight and took his family to Paris to learn French and a year later to Germany.
On this trip they were forbidden to read anything but German. However, the 15-year old
William had smuggled into his luggage and read in secret the renowned Théorie Analytique
de la Chaleur of Joseph Fourier (1768-1830) published in 1822.

William’s first scientific paper, published anonymously in his first year as a student in
Cambridge, defended, against criticism of it by a professor in Edinburgh, Fourier’s hugely
important method of representing almost any function by the trigonometric sine and cosine
functions. The professor had the grace to admit his error. William’s deep understanding of
Fourier’s heat-transfer equation already persuaded him by 1844 that the world must have
come into existence through a creation event. This was at least a partial stimulus to a most
important paper that he published in 1852. William’s father sent him again to Paris when he
was 18 to work in the laboratory of the great experimentalist Dragault. While there he had
discussions on almost equal terms with leading French mathematicians, including Joseph
Liouville (1809-1882). A theorem that Liouville proved will play a central role once we get
a bit further in the story.

William Thomson was an important telegraph engineer and inventor, which brought
him fame, wealth and honour. Queen Victoria knighted him in 1866 on account of his
work on the transatlantic telegraph project; in 1892, in recognition of his achievements in
thermodynamics (and opposition to Irish Home Rule!), he became the first British scientist
to be enobled, taking the name Baron Kelvin of Largs, Kelvin from the river in Glasgow
near his laboratory, Largs from the small town near Glasgow where he built a handsome
rsidence.18 The absolute scale of temperature is measured in kelvins to reflect his accurate
determination of its value: −273.15C. Despite many offers, he refused to leave Glasgow,
remaining Professor of Natural Philosophy for over 50 years, until his retirement. Towards
the end of his life, he made the statement: “There is nothing new to be discovered in physics
now, All that remains is more and more precise measurement.” This was unlucky to say
the least: the revolutionary discoveries of quantum mechanics and relativity (as well as the
electron and radioactivity) were made not long after the claim. He was buried in Westminster
Abbey next to the grave of Isaac Newton. But despite this honour and all his brilliance he
barely features in modern physics apart from his formulation of the laws of thermodynamics
and the definition of the scale of absolute temperature, to which we will soon come. He
was the last of the great exponents of classical physics and struggled for decades to solve
problems that could only yield to the wonders of relativity and quantum mechanics.

18I strongly recommend the collection of essays Kelvin: Life, Labours, Legacy.
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It’s time to describe the work for which he does deserve great credit. In 1849 he published
a paper that drew wide attention to Carnot’s work. It begins with the observation that the
presence of heat can be recognized in every natural object and that “there is scarcely an
operation in nature which is not more or less affected by its all-pervading influence”. It will
therefore be desirable, in laying the foundation of a physical theory of heat, to discover or

imagine phenomena free from all such complication . . . in which the relation between
cause and effect, traced through the medium of certain simple operations, may be
clearly appreciated. Thus it is that Carnot, in accordance with the strictest principles
of philosophy, enters upon the investigation of the theory of the motive power of heat.

In many ways, the most interesting thing about Thomson’s paper, which there is no need
to discuss in detail, is his attitude to caloric, about which he is ambivalent. He mentions
“the extremely important discoveries of Mr Joule of Manchester” but concludes that in the
present state of science

the fundamental axiom adopted by Carnot [that heat is an indestructible substance]
may be considered as still the most probable basis for an investigation of the motive
power of heat; although this, and with it every other branch of the theory of heat may
ultimately require to be reconstructed upon another foundation when our experimental
data are more complete.

It seems clear that Thomson at this stage clung to the notion of caloric because the full
implications of Joule’s work had escaped him. He recognized that work could be transformed
into heat but had doubts about the transformation of heat into work. In a paper of 1852 to
be discussed later, Thomson refers to a letter of 1847 from Joule that provided “an instance
of the conversion of heat into the mechanical force of a current” which showed that he had
been mistaken to believe that no evidence could be adduced to show “that heat is ever put
out of existence”. Five years later he was fully persuaded it could and repeated the striking
phrase about heat being “put out of existence”.

In his 1849 paper, Thomson highlighted Carnot’s achievement in a definition in which,
as a hyphenated adjective, thermodynamics is first named:

A perfect thermo-dynamic engine is such that, whatever amount of mechanical effect
it can derive from a certain thermal agency, if an equal amount be spent in working it
backwards, an equal reverse thermal effect will be produced.

The influence of Carnot’s ‘caloric’ way of thinking, as expressed in his waterfall analogy,
can be seen in Thomson’s comment: “At the conclusion of this cycle of operations the total
thermal agency has been the letting down of H units of heat from the body A, at the
temperature S, to B, at the lower temperature T .” Carnot’s analogy was so plausible—a
fixed amount of water does a definite amount of work when passing through a watermill
from a higher to a lower level. Some ideas can be very hard to shake off. That was beyond
the 25-year old Thomson in 1849 but not, as we will see in a moment, an almost equally
young man.
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In his discussion of the possible replacement of Carnot’s fundamental axiom, Thomson
had said this could only be done “when our experimental data are more complete”. It seemed
any reconstruction was relatively far off. In fact, within a year Rudolf Clausius (1822-1888)
brought down the tottering edifice of caloric by a clear argument using a few judiciously
chosen words. He had read, and acknowledged graciously, Thomson’s paper. Together with
Clapeyron’s paper, it was Clausius’ sole knowledge of Carnot’s book, a copy of which he had
been unable to acquire.19

First, a few biographical details. Clausius was born in Prussia in Köslin (now Koszalin
in Poland). His father was a Protestant pastor and school inspector; in his papers and a
well-known photograph, Rudolf comes across as a rather stern person. He graduated from
the University of Berlin in 1844, where he studied mathematics and physics with some
distinguished teachers. Prussia was making great efforts in education. During 1847, he got
his doctorate from the University of Halle on optical effects in the earth’s atmosphere. He
then became professor of physics at the Royal Artillery and Engineering School in Berlin
and Privatdozent at the Berlin University. In 1855 he became professor at the Swiss Federal
Institute of Technology in Zürich (ETH Zürich), where he stayed until 1867. During that
year, he moved to Würzburg and two years later, to Bonn. In 1870 he organized an ambulance
corps in the Franco–Prussian War and was wounded in battle, leaving him with a lasting
disability. He was awarded the Iron Cross for his services. His wife Adelheid died in childbirth
in 1875, leaving him to raise their six children. He continued to teach, but had less time for
research. He remarried in 1886 and had another child.

His famous paper “On the Moving Force of Heat and the Laws of Heat which may be
Deduced Therefrom” appeared in German in 1850 and was soon translated into English,
appearing in the Philosophical Magazine. This and regular translation of subsequent papers
ensured that his work soon became widely known. They express the key points clearly and
crisply; one senses a sharp mind at work. Over 15 years Clausius patiently worked his way
through to what is perhaps the most subtle concept in physics.

In laying the new foundation that Thomson thought was still some way off, Clausius
examines Carnot’s assertion that in a functioning steam engine it is the transmission of heat
“from a warm body to a cold one” which corresponds to the work produced. He quotes
Carnot’s assertion “no heat is lost in the process” and says he is not sure there is sufficient
experimental support for the claim. He argues that

although no such loss may have been directly proved, still other facts render it ex-
ceedingly probable that a loss occurs. If we assume that heat, like matter, cannot be
lessened in quantity, we must also assume that it cannot be increased; but it is almost
impossible to explain the ascension of temperature brought about by friction otherwise
than by assuming an actual increase of heat. The careful experiments of Joule . . . es-
tablish almost to a certainty, not only the possibility of increasing the quantity of heat,
but also the fact that the newly-produced heat is proportional to the work expended
in its production.

Clausius also notes that
19Besides being very good at introducing names for key concepts such as kinetic energy, Thomson deserves

credit for the way he highlighted the work of not only Carnot but also George Green. I must leave the reader
to check out Green’s remarkable life and achievements in Wikipedia.
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many facts have lately transpired which tend to overthrow the hypothesis that heat
is itself a body, and to prove that it consists in a motion of the ultimate particles of
bodies. If this be so, the general principles of mechanics may be applied to heat; this
motion may be converted into work, the loss of vis viva in each particular case being
proportional to the quantity of work produced.

He says there is an urgent need to establish whether “the production of work is not
only due to an alteration in the distribution of heat, but to an actual consumption thereof.”
He praises Thomson’s paper but disagrees with the worry that abandoning the principle
of indestructible heat would lead immediately to “innumerable other difficulties.” Clausius
counters “we ought not to suffer ourselves to be daunted by these difficulties, but that, on
the contrary, we must look steadfastly into this theory.” He continues:

On a nearer view of the case, we find that the new theory is opposed, not to the real
fundamental principle of Carnot, but to the addition “no heat is lost;” for it is quite
possible that in the production of work both may take place at the same time; a certain
portion of heat may be consumed, and a futher portion transmitted from a warm body
to a cold one; and both portions may stand in a certain definite relation to the quantity
of work produced.

Thus, according to Clausius the real fundamental principle of Carnot is this: whenever
work is produced by heat and a permanent alteration of the body in action does not at the
same time take place, a certain quantity of heat passes from a warm body to a cold one.20

Turning to the task of setting up a new theory of heat without the addition “no heat is
lost”, he says he will “merely lay down one maxim” founded on that assumption:

In all cases where work is produced, a quantity of heat proportional to the work done
is consumed; and conversely, by the expenditure of a like quantity of heat, the same
amount of heat may be produced.

Every now and then in the history of science one comes across a few words that, in the
context in which they arise, open up quite new vistas. For brevity, nothing can rival Darwin’s
‘by means of natural selection’, but the import of Clausius’ words here, clearly justified and
prompted by Joule’s work, is still great. They do not use those visionary phrases like “the
wonderful arrangements of creation” but in sober words give the first truly clear expression
of the first law of thermodynamics. It’s essential content is the precise equivalence of heat
and work. Of course, Clausius could never have formulated it if Joule had not performed his
famous experiment. The joule is a unit of energy for good reason.

Thomson missed his chance of priority because he baulked at the idea of heat being
“put out of existence”. Within a year Clausius became caloric’s executioner. Discussing the
conversion of water into steam and the heat involved, he said scientists distinguish

20The exclusion of a permanent alteration of the body (the working medium) rules out the possibility that
I mooted at the end of chapter 2 of halting the Carnot cycle, when the working medium is in a different
state, at the half-way stage. That would allow complete conversion of heat into work. To be clear I’m not
proposing humans can build perpetual-motion machines. What I will do is argue that the universe is not a
steam engine and therefore need not be governed by the same laws.
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the sensible heat and the latent heat. Only the former of these, however, must be
regarded as present in the produced steam; the latter is, not only as its name imports,
hidden from our perceptions, but has actually no existence; during the alteration it
has been converted into work.

Clausius’s no existence is the counterpart of Thomson’s put out of existence in his letter
to Joule (but not in his 1949 paper). The difference is that Clausius accepted without
reservation what Thomson had put off for another day. Clausius was wasting no time. As
he destroyed one concept, he was also working his way towards a new one. This was a much
more sophisticated concept than an indestructible substance.
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6 The Second Law of Thermodynamics

Clausius’s 1850 paper is justly considered his greatest. Besides the succinct formulation of the
first law of thermodynamics and significant steps toward the discovery of entropy, it contained
the first formulation of the second law. This came about through Clausius’s reexamination of
the theorem which Carnot thought he had proven—that all reversible heat-engines operating
between the same two temperatures have the same efficiency whatever working medium they
employ. If not, one could build a perpetual-motion machine. Clausius examined the claim in
the context of his newly minted but not yet named first law of thermodynamics. He found
the result right but the proof wrong. A tiny modification put it right. His argument begins
like Carnot’s.

Suppose two substances, one of which produces more work by transmitting a certain
amount of heat from a warm heat reservoir A to a colder one B. Use the two substances
alternately. The first could do a certain amount of work and the second consume it by
reversing the process. At the end, both A and B would be back in their original state
(at their original temperatures); further, the work expended and the work produced would
exactly balance, so that also, in agreement with Clausius’s formulation of the first law, the
quantity of heat would have been neither increased or decreased. But the distribution of the
heat would have been changed—more heat would have been brought from B to A than from
A to B. The net outcome would be a transmission of heat from B to A. Clausius’s killer
conclusion was that

by repeating both of these alternating processes, without expenditure of force or other
alteration whatever, any quantity of heat might be transmitted from a cold body to
a warm one; and this contradicts the general deportment of heat, which everywhere
exhibits the tendency to annul differences of temperature, and therefore to pass from
a warmer body to a colder one.

The last sentence is nothing more and nothing less than the first enunciation of the
second law of thermodynamics. It’s a fact all too familiar if you try to keep a house warm
in winter without a fire, but had any scientist before Clausius recognized its significance?
Carnot was close with the condition for maximising work done: heat must never flow from a
hot to a colder body without doing work by the working medium’s expansion. But, blinded
by caloric’s allure, he just missed laying the final foundation stone of thermodynamics. It is
through insights like Clausius’s, so simple when seen for what they are, that science makes
spellbinding advances.

Whereas Carnot invoked the impossibility of perpetual motion to prove all reversible heat
engines have the same efficiency, Clausius put thermodynamics on deep and sure foundations
by showing the kind of perpetual motion Carnot considered was simply impossible because
heat never flows spontaneously from a colder to a hotter body. Ever since the work of
Carnot, Clausius and Thomson, thermodynamics has been based on two axioms: energy
conservation, which rules out perpetual-motion machines ‘of the first kind’—you cannot get
something for nothing—and simple statements about the behaviour of heat which rule out
perpetual-motion machines ‘of the second kind’—even if you have something (energy in the
form of heat) you cannot use all of it.
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There will be a bit more to say about Clausius’s 1850 paper in connection with his
discovery of entropy, but it is now time to consider the first of a series of papers that Thomson,
reacting to Clausius’s paper,started to publish in 1852, the first based on a lecture given in
1851. The title of the series, The dynamical theory of heat, and its opening sentence reveal
the impact of Clausius’s paper. All caloric equivocation has vanished. Humphrey Davy had
caused two pieces of ice to melt by rubbing them together so “caloric does not exist” and
“the dynamical theory of heat [is] thus established”. He mentions the recent conclusions of
Rankine21 and Clausius, describes the work of Mayer and Joule and says the whole theory
of the motive power of heat is founded on two propositions. These coincide essentially with
what Clausius had already initiated and, it must be said, do somewhat give the impression
of a Brit trying to catch up with a German:22

Prop. I. (Joule). When equal quantities of mechanical effect are produced by any
means whatever from purely thermal sources, or lost in purely thermal effects, equal
quantities of heat are put out of existence or are generated.

Prop. II. (Carnot and Clausius). If an engine be such that, when it is worked back-
wards, the physical and mechanical agencies are all reversed, it produces as much
mechanical effect as can be produced by any thermo-dynamic engine, with the same
temperatures of source and refrigerator, from a given amount of heat.

Proposition I is essentially Clausius’ first maxim and a formulation of the first law of
thermodynamics; since Clausius openly credited the content to Joule, Thomson’s designation
is clearly justified. However, I think one could argue that its formal elevation to the status
of the first law of the new science of thermodynamics was Clausius’s service. The same,
with important input by Thomson, can be said of the second law. In the years following his
1850 paper, Clausius increasingly referred to the erster Hauptsatz und zweiter Hauptsatz der
Thermodynamik, which can be translated somewhat awkwardly as ‘the first principal law
and second principal law of thermodynamics’. Not surprisingly they are simply called the
first and second laws in English, but they do have a grander ring in German and helped the
second law achieve a special—indeed almost mystical—status.

The coining of words is important; as I already said, Thomson seems to have been the
first to use the expression ‘thermo-dynamic’ and in footnote 22 I mention his expression
‘internal energy’. His crediting to Carnot and Clausius of Proposition II above, which is not
to be confused with the second law, also stuck. It became known as the Carnot–Clausius
principle and, as we will see, played a central role in furious debates in the final decades of

21William Rankine (1820-1872), an engineer (in Glasgow like Thomson), played a lesser role in the creation
of thermodynamics.

22In one respect, he succeeded in that very well by naming and emphasizing the importance of the internal
energy of any medium used in a heat engine. Together with the work done by the medium, the internal energy
is a key term in the equation that expresses the first law. More generally it is above all due to Thomson
and, to some extent, his friend and collaborator Peter Guthrie Tate (1831-1901), as the joint authors of their
Treatise on Natural Philosophy, that energy, in its two forms kinetic and potential, came very prominently
to centre stage, displacing from there Newton’s concept of force. But ironically they argued strongly and
incorrectly that Newton himself was well aware of the existence and significance of energy and had merely
failed to name it. Because of this Thomson’s achievement was, and to this day still is, underrated.
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the 19th century about the status of thermodynamics as opposed to statistical mechanics,
to which we will come shortly.

The immediate continuation of Thomson’s paper introduces a rather curious feature in
the history of the second law. He writes:

The demonstration of the second proposition is founded on the following axiom: It is
impossible, by means of inanimate material agency, to derive mechanical effect from
any portion of matter by cooling it below the temperature of the coldest of the surround-
ing objects.23

In fact, there are several curious features. The first, which we have here, is that, in
contrast to Clausius’s improvement of Carnot’s perpetual-motion argument, which Clausius
did not formulate as a formal axiom but merely invoked as a fact of nature (heat does not
flow spontaneously from a cold to a warm body), Thomson’s is the first statement of the
second law formal terms. We’ll come to the next curiosity in a moment.

I won’t give Thomson’s proof of the Carnot–Clausius principle since, despite starting
from a seemingly different standpoint, it is very like Clausius’s proof, and both proofs, in
their turn, are closely related to Carnot’s proof but modified to take into account the now
fully recognized non-existence of caloric. This means, said Thomson, that Carnot was wrong
in his assumption that, in a complete cycle of operations, “the medium parts with exactly
the same quantity of heat as it receives.” For this reason

Carnot’s original demonstration utterly fails, but we cannot infer that the proposition
[itself] is false. [Its truth] appeared to me, indeed, so probable, that I took it in
connection with Joule’s principle . . . as the foundation of an investigation of the motive
power of heat . . . It was not until the commencement of the present year that I found
the demonstration given above, by which the truth of the proposition is established
upon [the axiom above] which I think will be generally admitted.

Thomson continued:

It is with no wish to claim priority that I make these statements, as the merit of first
establishing the proposition upon correct principles is entirely due to Clausius, who
published his demonstration of it in the month of May last year [1850], in the second
part of his paper on the motive power of heat. I may be allowed to add, that I have
given the demonstration exactly as it occurred to me before I knew that Clausius had
either enunciated or demonstrated the proposition. The following is the axiom on
which Clausius’ demonstration is founded: It is impossible for a self-acting machine,
unaided by any external agency, to convey heat from one body to another at a higher
temperature. It is easily shown, that, although this and the axiom I have used are
different in form, either is a consequence of the other.24

23In a footnote, in an illustration often repeated, Thomson says: “If this axiom be denied for all tempera-
tures, it would have to be admitted that a self-acting machine might be set to work and produce mechanical
effect by cooling the sea or earth, with no limit but the total loss of heat from the earth and sea, or, in
reality, from the whole material world.”

24The reader can find the proof of the equivalence in Fermi’s book (see footnote 5).
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The second curious thing is this. Clausius, despite his knack in the formulation of ax-
ioms and propositions, had not, besides not formulating them as an axiom, used the words
Thomson put in his mouth. Let me quote again what Clausius actually said:

Hence by repeating both of these alternating processes, without expenditure of force or
other alteration whatever, any quantity of heat might be transmitted from a cold body
to a warm one; and this contradicts the general deportment of heat, which everywhere
exhibits the tendency to annul differences of temperature, and therefore to pass from
a warmer body to a colder one.

The oddity of this story continues, for in 1854, in his next foundational paper on ther-
modynamics, Clausius, without referring to his 1850 paper and his just quoted words in it
and without any mention of Thomson’s 1852 formulation of ‘Clausius’ axiom’, gives a crisp
formulation of the second law: Heat can never pass from a colder to a warmer body without
some other change, connected therewith, occurring at the same time. Critically important
here is the subsidiary condition “without some other change, connected therewith, occurring
at the same time”. This condition is already effectively present in Clausius’ 1850 words
“without expenditure of force or other alteration whatever” but is neither explicit nor, I
think, implicit in Thomson’s 1852 formulation of his own axiom (though through the caveat
“unaided by any external agency” it is in the one he attributes to Clausius!)

In his 1936 lectures, Fermi emphasized the importance of an addition like Clausius’s
by formulating ‘the postulate of Lord Kelvin’ as follows: A transformation whose only final
result is to transform into work heat extracted from a source which is at the same temperature
throughout is impossible. To this, Fermi adds the illuminating footnote:

An essential part of Lord Kelvin’s postulate is that the transformation of the heat into
work be the only final result of the process. Indeed, it is not impossible to transform
into work heat taken from a source all at one temperature provided some other change
in the state of the system is present at the end of the process.

This is essentially the comment that I made at the end of chapter 2, namely that heat
can be fully transformed into work if the Carnot cycle is stopped at the half-way stage c in
Fig. 1. As I noted then, this may be relevant when we come to consider the universe and
whether its evolution can be likened in any way to a Carnot cycle.

The reader may well ask where Fermi’s ‘only final result’ is to be found in Kelvin’s
words. They aren’t. I suspect they are Fermi’s; they are certainly sharp and may have
been prompted by the widely quoted proposal of Max Planck in 1897: “It is impossible to
construct a periodically functioning machine that does nothing except raise a weight and
cool a reservoir.” Planck asserts that there are numerous different possible formulations
of the second law and that all the more or less satisfactory ones, which include those of
Clausius and Thomson, are effectively equivalent. Of his own, he says it is mainly chosen for
its use of expressions familiar to engineers. A formulation like Planck’s or Fermi’s is often
called the Kelvin–Planck formulation. I don’t think there is any reason to doubt Thomson’s
statement that he came to his formulation before learning of Clausius’ work. But what is
not in doubt is that Clausius was there first and moreover, already in his 1850 words, got
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the full formulation right. Thomson did not. This, like the numerous formulations that one
can find of the second law, illustrates the delicate nature of its content. It’s a tricky matter.

I’ve already said that the universe is not a steam engine. Except for the heat engines
constructed by humans, I think it is questionable whether any naturally occurring ones exist
anywhere in the cosmos. This just underlines the point that we may need to think about
it differently. This is where Thomson may help us more than Clausius, as the next chapter
will explain.
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7 The Dissipation of Mechanical Energy

Thomson may have been slow off the mark in realizing caloric’s days were numbered, but
he did recognize and point out clearly before anyone else something that soon came to be
seen as an alarming, if not to say nightmarish, implication of the second law. In 1852, he
published his paper “On a Universal Tendency in Nature to the Dissipation of Mechanical
Energy.” Carnot’s single observation, so close to a formulation of the second law, on how one
must maximise work done by heat prompted Thomson to note “the remarkable consequences
which follow from Carnot’s proposition, that there is an absolute waste of mechanical en-
ergy available to man when heat is allowed to pass from one body to another at a lower
temperature, by any means not fulfilling his criterion of a ‘perfect thermo-dynamic engine’.”
Thomson concluded: “As it is most certain that Creative Power alone can either call into
existence or annihilate mechanical energy, the ‘waste’ referred to cannot be annihilation, but
must be some transformation of energy.”

To clarify what he means by examples, Thomson introduces the concept of stores of
mechanical energy and divides them into two classes—statical and dynamical. The former
are weights at a height, electrified bodies, a quantity of fuel; the latter are masses of matter in
motion, a volume of space through which undulations of light or radiant heat are passing, a
body having thermal motions among its particles (that is, not infinitely cold). As examples
of the transformation of energy, he mentioned “When heat is created by any irreversible
process (such as friction), there is dissipation of mechanical energy, and a full restoration of
it to its primitive condition is impossible” and “When heat is diffused by conduction, there
is dissipation of mechanical energy, and perfect restoration is impossible.” He gave similar
examples of irreversible transformation for radiant heat or light and concluded:

1. There is at present in the material world a universal tendency to the dissipation of
mechanical energy.

2. Any restoration of mechanical energy, with more than an equivalent of dissipation,
is impossible in inanimate material processes.

3. Within a finite period of time past the earth must have been, and within a finite
period of time to come the earth must again be, unfit for the habitation of man as at
present constituted, unless operations have been, or are to be constituted, which are
impossible under the laws to which the known operations going on at present in the
material world are subject.

The reference to ‘inanimate material processes’ in the second of these may reflect a
residual religious hope that animate processes might be different.

I’m not sure how Thomson came to the conclusions in his third statement; he gave no
detailed arguments for them. He probably had in mind, at least in their earliest rudimentary
form, his ideas about the origin of the sun and earth that he developed more fully in the
next decade or so. According to them, both bodies had been formed in the not too distant
past; for this reason alone the earth could not have been fit for the habitation of man—it
would not even have existed. Since in accordance with the not yet formally stated (but with
its implications well understood) first law of thermodynamics the sun and earth each had
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only finite stores of mechanical energy, these must be dissipated within a finite time in the
future.

By 1854, when he addressed the British Association, Thomson’s thoughts had crystallized
in certain key respects. He was of the firm opinion that the ultimate source of all mechanical
energy in the solar system was gravitational potential energy of a primordial nebula that,
by our epoch, had been largely transformed into hot solid or liquid bodies. He believed that
the known mechanical laws could be used with confidence to predict in broad outline the
future of the solar system, which was one of progressive cooling through dissipation leading
to the end of the world as a habitation for man. The same laws could be used to trace
things backwards to an epoch in which all bodies must have been indefinitely remote from
each other. However, “such conclusions are subject to limitations, as we do not know at
what moment a creation of matter or energy may have given a beginning, beyond which
mechanical speculations can not lead us”. Thomson insisted such divine intervention could
not be ruled out because “all fossil organic remains, are organized forms of matter to which
science can point no antecedent except the Will of a Creator, a truth amply confirmed by
the evidence of geological history.”

This last comment makes it worth saying something about how, in the second half of
the 19th century, Thomson, almost single-handedly, transformed ideas about geology. This
was a discipline very largely developed in Britain. For this discussion, I draw on Joe D.
Burchfield’s Lord Kelvin and the Age of the Earth (see also the essays in the collection
mentioned in footnote 18). In the mid 19th century, the dominant theory in geology was
uniformitarianism. It had been initially proposed by James Hutton (1726-1797). He had
argued that lawful physical processes like those currently operating had been doing so over
immense stretches of time and were capable of creating the observed geological record. The
‘uniform’ in the later coining uniformitarianism drew attention to the assumed uniformity of
the relevant physical processes. Hutton postulated a cyclic progression of changes so ancient
as to obscure any “vestige of a beginning” and to hold out “no prospect of an end”. This
did not necessarily imply, as was often assumed, an eternal, essentially unchanging world,
but simply a stretch of time so great that its actual length was of no practical significance.
Hutton’s ideas were developed much further by Charles Lyell (1797-1875), who between 1830
and 1833 published his multi-volume Principles of Geology.

Both of the newly discovered laws of thermodynamics enabled Thomson to mount a
sustained attack on uniformitarianism that lasted more or less to the end of his life. He
thereby intoduced into geology physical principles it had hitherto been lacking. The first
law guaranteed that individual bodies only had a definite finite store of energy, while the
second ensured that it must inevitably be dissipated. This raised the important question of
the length of time dissipation would take and Thomson’s interest in the age of the earth.
He also challenged Hutton’s cyclic progression of changes, which suggested the need for a
perpetual motion machine of the second kind and could be ruled out by the second law.

A substantial digression into the impact of thermodynamics on geology in the second
half of the 19th century is not warranted but, since it is very much part of the story within
a story, I think it is worth quoting the opening of a popular article Thomson published in
1862 in Macmillan’s Magazine. It opens with the confidence of a man who, like Joule before
him, has made a great discovery in science but who then, as a religious person, finds himself
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forced to equivocate:

The second great law of thermodynamics involves a certain principle of irreversible
action in Nature. It is thus shown that, although mechanical energy is indestructible,
there is a universal tendency to its dissipation, which produces gradual augmentation
and diffusion of heat, cessation of motion, and exhaustion of potential energy through
the material universe. The result would inevitably be a state of universal rest and
death, if the universe were finite and left to obey existing laws. But it is impossible to
conceive a limit to the extent of matter in the universe; and therefore science points
rather to an endless progress, through an endless space, of action involving the trans-
formation of potential energy into palpable motion and thence into heat, than to a
single finite mechanism, running down like a clock, and stopping for ever. It is also
impossible to conceive either the beginning or the continuance of life, without an over-
ruling creative power; and, therefore, no conclusions of dynamical science regarding
the future condition of the earth can be held to give dispiriting views as to the destiny
of the race of intelligent beings by which it is at present inhabited.

Thomson was surely struggling with the possible implications of Darwin’s On the Origin
of Species by Natural Selection, which had been published in 1859. As envisaged by Darwin,
evolution must have taken place over a great stretch of time and, rashly as he latter admitted
bitterly to friends, he had included an estimate for the age of the Weald, a geological feature
near his home. For this he had assumed the sea would eat into and denude chalk cliffs at
the rate of one inch per century. This led Thomson, on the basis of his considerations about
the physical nature of the sun, to ask sceptically in his 1862 article “What then are we to
think of such geological estimates as 300,000,000 years for the ‘denudation of the Weald’?”
Under the impact of this attack, Darwin discretely omitted from later editions the estimate
of the Weald’s age, replacing it with bland hand-waving arguments.

For several decades a battle raged between, on the one hand, the geologists and supporters
of evolution and, on the other, the physicists. It pitted two ‘bulldogs’ against each other:
Thomas Huxley on Darwin’s side and Peter Guthrie Tait, who argued very dogmatically for
the line taken by Thomson. Of course, all Thomson’s arguments about the nature and age of
the sun and earth were hopelessly premature. Antoine Becquerel’s discovery of radioactivity
in March 1896 proved that the earth had a powerful, completely unexpected internal source
of heat and provided radioactive dating as a new method for estimating the age of the earth.
After refinement over a few decades, it led to an estimate for the age of the earth about 15
times greater than Darwin’s for the age of the Weald. Moreover, in the 1930s, nuclear fusion,
not gravitational potential energy, was shown to be the true source of the sun’s energy.

It is indicative of the disconcerting implications of Thomson’s 1852 paper for his con-
temporaries that almost immediately Rankine published a paper with the bizarre proposal
that

in all directions round the visible world, the interstellar medium has bounds beyond
which there is empty space. If this conjecture be true, then on reaching those bounds
the radiant heat of the world will be totally reflected, and will ultimately be reconsti-
tuted into foci.
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This was therefore a mechanism to achieve ‘anti-dissipation’.
Rankine’s hope, rebutted by Clausius in 1863, to salvage something from ultimate dis-

sipation was the first attempt to seek a cosmological mechanism capable of reversing the
gloomy implications of the second law. Intriguely, and not widely known, is the fact that by
no means everyone reacted like Rankine. In fact, for them the second law had a virtue. If
the universe is ‘winding down’, this suggests it must have been ‘wound up’ at some time in
the past. Religious people, serious scientists among them, interpreted this as evidence for
divine creation of the universe—a comforting thought. The historian of science Helge Kragh
has written an interesting book, Entropic Creation, on the subject. Friedrich Engels, as a
materialist, liked the eternity implied by the first law but not the second, with its implication
of a creation event. Professional scientists, Thomson among them—in 1844 he had, as I said,
already surmised a creation event for the universe—tended to avoid publishing papers on the
idea, probably fearing it might harm their reputation, but in religious and cultural circles,
especially in Germany, the possibility created much discussion up to and even beyond the
end of the 19th century. One could see the scientific grounding through the second law of
belief in a creation event as an anticipation of big-bang birth of the universe. At the very
least, even though Thomson himself did not want to accept it, the existence of the universal
phenomenon to which his 1852 paper drew attention did suggest a universe that evolves and
has a history.

However, there is one thing that does need to be said. By no means all of the processes
we see around us involve dissipation and decay. A cup may shatter but it was made. We are
born before we die. All these processes share the common temporal direction that may be
called a background arrow, but they do highlight the fact that in the universe around us we
observe both creative and destructive processes. The standard view is that creation is only
possible because it is accompanied by a greater amount of destruction. This can certainly be
argued if we restrict our attention to what might be called our immediate environment, but
in The Janus Point, for which (as explained in the preface) the present material originally
served as an introduction, I argue things might look different in the context of the entire
universe.

One reason I have included this chapter on Thomson’s paper, which very soon led to the
notion of heat death of the universe, is that, unlike Clausius’s notion of entropy, which is
quantitative, dissipation as understood by Thomson is qualitative. The difficulty with quan-
tification is ambiguity. Definite numbers can only be introduced if well defined boundaries
or limits are at hand. What gave Joule a decisive advantage over the unfortunate Mayer,
who merely showed that violent shaking increases the temperature of water, was not only
enclosure of water in a box, which both had, but Joule’s precise measurement of the work
done by descent of weights.

The good thing about Thomson’s paper is the ease with which we can recognize dissi-
pation without having to quantify it. Consider the classic example, given so many times,
of entropy increase: the cup I just mentioned which falls from a table onto the floor and
shatters. Nobody can deny the cup has broken and in that sense dissipation has occurred.
But, as we will see in the next chapter, no two scientists set the task of calculating an actual
entropy increase associated with the unfortunate accident could possibly come up with the
same value without prior agreement between themselves of definite spatial and temporal
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boundaries within which the entropy increase is to be calculated.
While accepting this point, the reader might still wonder why I included a discussion in

this chapter of long abandoned ideas about the nature and history of the earth and sun.
My main reason, besides the intrinsic interest of the ideas, is that the 1850s and 1860s were
the decades in which certain aspects of thermodynamics came to have the appearance of
unshakeable truths. In fact, modern discoveries have only changed the details in Thomson’s
overall picture of the formation, stabilization and decay of the solar system. Gravitational
forces have simply been augmented by further forces operating in accordance with the laws of
quantum mechanics. As regards the concerns of this book, the really significant change has
been the development of cosmology as a mature science. It bears scant resemblnce to Thom-
son’s “endless progress, through an endless space, of action involving the transformation of
potential energy into palpable motion and thence into heat”.

The real game changer is Hubble’s discovery of the expansion of the universe. I think
that should raise doubts about at least some aspects of the thermodynamics that Carnot,
Clausius and Thomson discovered. With that in mind, I will say something about a point
made in chapter 19 of The Janus Point that bears directly on Kelvin’s notion of universal
dissipation of mechanical energy in an expanding universe. It is not my intention here
to repeat its contents, though I will say I address an issue that Kelvin did not when he
introduced the notion, which I think is very valuable, of stores of mechanical energy. He
told us how they are dissipated and ultimately go out of existence. Did he ever ask how
they came into existence? I don’t think he did. All we have is that 1862 hand waving in
Macmillan’s Magazine, in which he speaks of “an endless progress, through an endless space,
of action involving the transformation of potential energy into palpable motion and thence
into heat”

I took me four years to write The Janus Point. Throughout the process I was trying
to understand the best way to characterise Kelvin’s dissipation and Clausius’s growth of
entropy, to which we are about to come. These days entropy is almost universally called a
measure of order, with entropy growth tantamount to an increase of disorder. However, in
a little booklet of Peter Atkins I found the possibly more helpful suggestion that entropy
measures the quality of heat—the same amount of energy in the form of heat at a higher
temperature in a small space can do more work than the same amount of heat energy
spread out in a large space. I began to think that Kelvin’s energy dissipation might have
been better characterised as spreading, especially for unconfined systems like stars in an
expanding universe. The words to express this only came to me near the very end of writing
the book :

Variety, expressed through shapes and ratios, can increase forever. With your thumb,
you can press an ink drop on paper into a smudge; the ink, like Boltzmann’s particles
in a box, is trapped within the area on which you press your thumb. But nature, the
artist, holding a fine pen between her fingers and thumb,25 can, maintaining contrast
and with it variety, draw out the same ink as thinly and as far as her inspiration takes
her. She can create the finest picture imaginable for eyes that see contrasts. Those

25This was my text. My excellent copy editor Sue Warga felt it better not to give nature and the prominent
concept creation measure of an earlier chapter a gender. I concurred; the printed text reads “nature, the
artist, holding a fine pen between fingers and thumb”.
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contrasts are ratios made manifest. Ratios are the foundation of so much that we
experience. The real numbers permit unending extension of ratios – one real number
divided by another – all the way to infinity. It can be done with density contrasts on
the inside of a sphere. In his nutshell, Hamlet can be king, not of bland infinite space,
but infinite variety.

Shortly before revising this history of thermodynamics, in an article for the online journal
Nautilus, I found a way, less poetic but more scientific, to argue that Kelvin’s ‘dissipation’,
with its negative connotation,26 might with advantage have been called ‘spreading’. This is
what I wrote:

There is a beautiful effect I often go to watch on afternoon walks near my home. A
tree hangs above a brook where the water flows smoothly over a ford. If it has rained,
drops of water fall from the tree onto the water, creating circular waves that spread
out over the flowing water. You can watch the effect for far too long if you need to get
on with work. The waves created by drops that hit the water at different points meet
and pass through each other, each emerging intact. If the brook had no banks and the
water no viscosity, that would create the condition radiation finds in the vast voids of
our expanding universe and the patterns would remain as beautiful for ever. That’s
the difference between an open and a closed system.

Before the banks have their effect in the brook, mechanical energy is first entirely
within each falling drop but is then spread out in the circular waves. Except at or near
equilibrium Clausius’s entropy is a quantity difficult to define and measure; Thomson’s
dissipation is a qualitative effect that is both universal and easy to recognise. He
mentioned the heat created by friction as an example of dissipation; the illustration
has been endlessly repeated. But Thomson loved the river Kelvin in Glasgow and
took his baronial name from it. He must so often have seen water drops falling onto
the river. If in the title of his 1852 paper, which was so influential, he had changed
‘dissipation’ into ‘spreading’—it would have been a better characterisation—who can
say how that might have changed the interpretation of the second law, especially after
Hubble’s monumental discovery?

The circle is the most perfect geometrical figure and pi, which relates its circumference
to its radius, bids fair to be the most perfect number. “Ah,” you say, “a thing of
beauty may have been born, but it decays as the waves get shallower and shallower.”
To which I answer that you forget the lessons of Gulliver’s Travels and the relativity
of size. It is only ratios that have physical meaning. The beauty is in the ratios, and
they persist forever even in the expanding universe.

26Paul Davies has called Kelvin’s landmark paper “one of the gloomiest of all times in science”.
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8 The Discovery of Entropy

If you walk from any point A on the earth’s surface your altitude above sea level when you
get to any other point B will be the same whatever route you take. The same is true of
the difference of altitudes. In fact, the difference is physically more significant since altitude
could just as well be measured relative to Mount Everest’s peak as to sea level. Quantities
that are route independent are very important in physics. In thermodynamics they are
called state functions. We already met them as the pressure, volume and temperature of
gases when in equilibrium (p. 000.).

There are other important quantities that, in contrast, are route dependent. To give
an example that you can readily understand, suppose that in some country you are always
forced to travel by toll roads to get from one point to another and that there are many roads,
with different tolls, between any two points. To ease traffic flow, the authorities may even
pay you to go by some routes. Then the total cost of the tolls paid during the journey will
obviously depend on the route you take. To determine the difference in heights above sea
level at the end of a journey, all you need to know are the points of departure and arrival. But
if you are having to pay tolls and there are different possible routes, you cannot determine
the cost of the journey unless the route is specified.

An indication of the way Clausius recognized the full significance of Joule’s work is
his observation in his 1850 paper that there exist two different kinds of work that can be
performed in thermodynamics system. One is interior work, for example, the work needed
“to overcome the mutual attraction of the particles” of water. (Joule had spoken of the
molecules of a compressed spring being “forced asunder”.) Now the same amount of heat
will need to be expended on the interior work whenever and however it happens, for that
depends solely on the nature of the molecules. It’s route independent and analogous to
altitude—all you need to know are the intial and final states.

The other is exterior work done, for example, by successive expansions and compressions
of a gas. If the original condition of the gas is again established at the end of the process there
is no guarantee that the entire amount of work produced will equal the amount expended.
This would be the case in a Carnot heat engine, Fig. 1, taken along abc and then simply back
to a along cba. Then no net work would be done. But with the route along cda back to a the
maximum possible work is done. Thus, exterior work is a route-dependent quantity. One
has to know the succession of states through which the system is carried by the application
of heat or pressure from without.

Clausius’s insight about the difference between the two kinds of work overturned the
notion of indestructible caloric. For if caloric did exist, the amount of it in the working
medium would be fixed given the temperature and volume. Like the height above sea level,
it would be a state function. In his 1850 paper Clausius banished a state function; four years
later he introduced a replacement, entropy. It is a much more sophisticated concept than
caloric and intimately related to the measurement of temperature.

Galileo used the expansion of gas to measure temperature. Relatively soon it was dis-
covered that, if confined and kept at a constant pressure, the volumes of many gases all
increase in the same proportion as the temperature is increased. These are the so-called
ideal gases. With the freezing and boiling points of water used, as in the Celsius scale, as
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reference points, such gases reliably measure concordant temperatures as long as they are
far from their liquefaction temperature. However, once that is approached the gases behave
differently and give discordant temperatures. Nothing singles out the readings given by one
gas rather than another. The very concept of temperature is threatened.

Moreover, by the early 19th century ideal-gas thermometers had provided strong evidence
for a limiting value of possible temperatures. They showed that PV = t + a, where P is
the constant pressure of the employed gas, V is its volume, t is the temperature and a is a
constant found, to good accuracy, to be the same for all gases. Clearly, if one could cool the
gases to t = −a something special would happen: PV = 0. Since the pressure P is fixed,
the volume of the gas, if ideal, would have to become zero. All tested gases pointed to a
limit of possible temperatures, an absolute zero. In the Celsius scale, Thomson found it to
be −273.15◦. In his honour, temperatures measured from it are called kelvins.

There still remained the problem of defining an unambiguous notion of temperature and
measuring it. Thomson’s solution to this problem simultaneously solved another. Carnot
had shown that the efficiency of a perfect heat-engine depends only on the two temperatures
between which it operates but he had not been able to find its value. This depends on the
amount of heat taken from the furnace and the amount that must be wasted when deposited
in the condenser. The problem is to pass from the efficiency defined in terms of them to
the temperatures at which the transfers take place. Thomson’s answer almost looks like
cheating. He did not use temperatures to determine amounts of heat but rather amounts of
heat to define temperatures.

I’m not going to go through here the subtle arguments that, through the work of Thomson
and Clausius, led to the simultaneous solution of these two problems and also the definition of
entropy. You will find them in Fermi’s sharp and succinct account, which employs Thomson’s
form of the second law (which, as is standard now, he calls Kelvin’s). Here I will simply
outline the conditions involved and give the key results. However, for anyone with physics
at high-school level among their accomplishments, it’s well worth trying Fermi. The story is
one wonder after another.

The key axiom is the second law, to which, in either of its forms, Carnot himself came so
close. Everything else comes straight from his book: the notions of equilibrium states and
reversible heat-engines. As Fermi shows, using the second law twice, the mere ability to order
temperatures as hotter or colder makes it possible, through purely mechanical measurements
(using those ‘gifts of nature’), to fix their difference in a purely thermodynamic absolute scale
of temperature. It is defined independently of ideal gases but agrees with their readings when
they are far from liquefaction. It is also noteworthy that the boiling and freezing points of
water are used to define the Celsius scale of temperature but only one of them to define the
absolute scale; the second point is the absolute zero, which is universal in being the same
whatever the substance.

Bearing in mind that amounts of heat and work are, as Joule showed, interchangeable,
let’s now consider the efficiency of an idealized Carnot heat engine. In its first stage, let the
working medium take up the heat Q2 from the furnace and the heat wasted in the condenser
be Q1. Then the amount of work done is proportional to Q2 −Q1. The expenditure of heat
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is Q2, so the efficiency η is

η =
Q2 −Q1

Q2

. (8)

The denouement, obtained by Thomson’s subtle arguments and presented by Fermi, is that
one can define consistently the ratio of the temperatures T2 and T1 of the furnace and
condenser in terms of Q2 and Q1 as follows:

T2
T1

=
Q2

Q1

. (9)

This definition of temperature agrees with the readings of ideal-gas thermometers and gives
the absolute thermodynamic temperature scale.

With amounts of heat expressed by means of (9) in terms of absolute temperatures, the
efficiency becomes

η =
T2 − T1
T2

. (10)

This shows that steam-engines, operating between 100◦C and the typical ambient tempera-
ture say 20◦C, have an efficiency at best of the order

η =
373− 293

373
=

80

373
, (11)

which is barely more than 20%. Newcomen’s original steam engine had an efficiency of only
2% (but still managed to create England’s “colossal power”).

This may all seem to be far removed from the profound difference between past and
future, but Carnot’s remark, picked up by Thomson, “that there is an absolute waste of
mechanical energy available to man when heat is allowed to pass from one body to another
at a lower temperature” already indicates the way things will develop. Clausius took the
next decisive step. In 1854 he published a mathematical expression for what he called ‘the
transformational content’ of a body. It was entropy in all but name.

He considered a system that, like a Carnot heat engine, can undergo cyclic transfor-
mations from and back to a given initial state. However, instead of being brought into
contact with just two heat reservoirs there can be many having the absolute temperatures
T1, T2, . . . , TN . At them the system takes up or deposits the amounts of heat Q1, Q2, . . . , QN,
these being counted positive or negative accordingly. Moreover, Carnot’s strict restriction
to reversibility is relaxed. Both reversible and irreversible heat transfers, with finite tem-
perature differences, are allowed. In the latter case, the temperatures that appear in the
calculations are always those of the heat reservoirs. Finally, the system needs at least two
‘boxes’ containing a medium of some kind that can take up and give up heat which can be
transferred between them and into them individually from the reservoirs.

Under these conditions, Clausius proved that, for a cyclic process in which all heat
reservoirs are visited, the sum

Q1

T1
+
Q2

T2
+ . . .

QN

TN
(12)

is negative unless all heat transfers are reversible, in which case the sum is exactly zero.
The proof is one of the wonders I mentioned. It involves an additional heat reservoir at an
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arbitrary temperature T0 and as many Carnot heat engines as the number, N , of reservoirs
that the system ‘visits’. They are constructed precisely to enable them to ‘ferry’ as much
heat between the T0 reservoir and each of the N reservoirs to ensure that they are all returned
to their original state. So too is the system.

The only outcome of the whole cyclic process is that heat has been taken from the source
and work may have been done by the heat engines. As the calculations show, that will be
the case if the sum (12) is positive. But that would violate the second law (here used, in
Kelvin’s form, for the third time in Fermi’s account) because work would have been done
by extracting heat from a source, the T0 reservoir, at a uniform temperature. Therefore, the
sum (12) can only be zero or negative. It is easy to show that the value zero is only possible
if all heat transfers are reversible. If any are irreversible, the sum will be negative. This
is when heat is allowed to flow from a hotter to a colder medium without doing any work.
Carnot was so close to the whole story.

In arriving at the concept of entropy and its implications, Clausius initially considered
transformations from one equilibrium state of a system to another solely by reversible trans-
formations. The key thing that led to his success was to take no account of any work that
might be done by or on the system. He just considered the amounts of heat transferred
into or out of its medium and, critically, the absolute temperatures at which this happens.
Suppose the amount of heat Q flows reversibly into the medium at the absolute temperature
T . Then Clausius called

Q

T
(13)

the transformational content. This makes sense—the medium has been changed and one
might like to quantify the change. The subtlety is that it is not the obvious quantity Q, the
amount of heat, that appears in the definition but Q divided by the absolute temperature.
This makes (13) not simply an amount of heat but something that also reflects its nature
and measures, as I learned from Peter Atkins, its quality, or rather lack of quality—the
magnitude of (13) is greater the lower the temperature, and with low temperature one can
do less than with high temperature.

As I mentioned in the previous chapter, increase of entropy is very often characterized as
an increase in disorder. Although somewhat anthropocentric in origin, decrease in quality is
a useful complement. Another, which is particularly helpful and closely related to Thomson’s
dissipation of mechanical energy, is decrease in concentration. An example often given for this
concerns photons (the ‘particles of light’ whose existence Einstein was the first to recognize).
The earth is bathed in a steady stream of high-energy photons that come from the sun and
are absorbed during the day by plants, by soil and, often carcinogenically, by sun-bathing
humans. During the night approximately twenty times as many low-energy photons are
radiated from the earth into space. The concentration of the associated energy is reduced
by a factor ten.

From now on I will not use ‘transformational content’ for (13) and instead Clausius’s later
coining entropy. Very often he would consider infinitesimal additions of heat and express the
corresponding infinitesimal increase of entropy by the equation

dS =
dQ

T
. (14)
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This is one of the great equations of physics. I have seen it suggested that Clausius chose
the letter S for the new concept of entropy to honour Carnot, taking the first letter of Sadi.
It’s a nice thought and surely appropriate. The notation has stuck.

Equation (14) casts a very interesting light on what happens in an idealized heat engine.
Carnot believed the amount of caloric would merely pass through the working medium and
remain unchanged—it would be conserved. But in fact what remains unchanged is the
amount of entropy in the world. In stage 1 of the cycle the amount of entropy Q1/T1 flows
into the working medium from the furnace, assumed to be a heat reservoir of infinite capacity;
in stages 2 and 4 there is no heat exchange and therefore no change in entropy: in stage 3 the
entropy amount Q3/T3 is transferred from the working medium to the refrigerator. Because
some of the heat energy Q1 was used to do work in stages 1 and 2 (and was thereby “put
out of existence”), the quantity Q3 transferred to the refrigerator is less than Q1. However,
T3 is less than T1 by precisely the amount that ensures Q1/T1 = Q3/T3 and thus equality
of the entropy that enters and leaves the working medium. The entropy which the furnace
sheds is exactly taken up by the refrigerator.

There is no change in the entropy of the universe. If we accept that entropy increase
is synonymous with increase of disorder—whether this is always so is something I have
already questioned and discuss further in The Janus Point—then, although not all the
energy extracted from the furnace can be exploited, the work done in a Carnot cycle does
not lead to any increase of disorder. You will recall that, at the end of chapter 1, I noted
that, considered objectively and without anthropocentric distortion, a Carnot cycle stopped
at the half-way has done work without any wastage. And a complete cycle changes the shape
of the universe; we now see it does that without increasing disorder.

We have now very nearly reached the goal which Clausius had had in mind since his
paper of 1850: to find a quantity that characterizes the change in some system independent
of the actual succession of states through which the system had been carried. The difficulty,
any ‘exterior work’ that might or might not be done by or on the system, is eliminated in
equation (14). It makes no reference to any such work. The ‘interior work’ that heat addition
might do by breaking up molecules or simply making them move faster was no concern to
Clausius.

The final step to establishing the existence of a new ‘route-independent’ state function is
to suppose that the considered system is carried by heat transfer from an initial equilibrium
state A to another equilibrium state B by infinitesimal reversible steps. Then the change in
entropy, ∆S, is

∆S =
∫ B

A

dQ

T
. (15)

The integral sign
∫

means simpy that one is adding up all the individual infinitesimal con-
tributions dQ/T . The right hand side of equation (15) is the infinitesimal form of (12).
Clausius’s triumph was his proof that whatever route one took, always in reversible steps
between between A and B, the value found for ∆S will be the same. One can also imagine
going round in a closed loop of such reversible steps. Then one will find that ∆S = 0.

One can now choose any equilibrium state of the system as reference and give it a nominal
value S0 of the entropy. This is equivalent to measuring altitude from, say, Everest’s peak.
Then the entropy of any other state is defined relative to it. It is also easy to show that
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if the heat transfers in (15) are irreversible, the corresponding value of (15) will be greater
than for a reversible process. Clausius’s entropy is indeed like altitude. If you go for a hike
in the mountains along any route and come back to the point from which you set out, you
have obviously come back to the same altitude.

Now we come to the entropic equivalent of Thomson’s universal tendency in nature to
the dissipation of mechanical energy, which, as we know, can be stored in heat. Let the two
equilibrium states A and B of the sytem have entropies S(A) and S(B) and suppose any
transformation, reversible or irreversible, between A and B. It is easy to show that∫ B

A

dQ

T
(16)

is less than or equal to S(B)− S(A), with equality holding only when the transformation is
reversible. Now comes an argument that, at least as presented by Fermi, is rather curious.
He says that if we consider a completely isolated system it clearly cannot take up or give out
any heat, so that all the dQs in (16) are zero. This in turn means that S(B) is greater than
or equal to S(A). The conclusion is that for any transformation occurring in an isolated
system the entropy of the final state can never be less than that of the initial state. If the
entropy does not stay the same, it must increase. I say the argument is rather curious
since all the calculations up to this critical step have been made under the assumption that
something does actually happen—heat is exchanged. A conclusion, fatal as we will see in its
implications for the universe, seems to be based on nothing happening !

In fact, Fermi’s two subsequent examples of transformations in an isolated system are
so persuasive one cannot doubt the italicized conclusion even if the argument leading to
it is strange. One involves the generation of heat by friction, while the other, which fits
the situation rather better, relies on the possibility that the system is composite in nature,
taking the form of a collection of ‘boxes’ that are both thermally insulated from each other
as well as from the outside world. If two adjacent boxes have different temperatures and
the insulation between them is removed, it is clear that heat will flow from the hotter to the
colder box. This is a good example of a transformation that does increase the entropy of the
complete system.

Fermi also draws another important conclusion: when an isolated system is in the state of
maximum entropy (consistent with its energy), it cannot undergo any further transformation,
since that would decrease its entropy. Thus, the state of maximum entropy is the most stable
state for an isolated system. It is in the state of heat death. The extent to which such an
argument can be applied to the universe is a major topic in the second half of The Janus
Point.

For what comes shortly, what Fermi says about the possibility of defining entropy for
nonequilibrium states or inhomogeneous systems is important. First, he notes that in the
definition of entropy it is critical that the initial and final states are equilibrium states. This
is because the passage between them by reversible transformations is necessarily through
a sequence of equilibrium states. By continuity, the initial and final states must also be
equilibrium states. However, Fermi then comments that in many cases it is possible to
define the entropy even for nonequilibrium states. Consider, for example,

a system composed of several homogeneous parts at different temperatures and pres-
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sures. Let each part, however, have a uniform temperature and pressure. If the different
parts are in direct contact with each other, the system will evidently not be in equi-
librium, since heat will flow from the hotter to the colder parts, and the differences
of pressure will give rise to motion. If, however, we enclose each part in a thermally
insulating rigid container, our system will be in equilibrium, and we shall be able to
determine its entropy.

For comparison, when Clausius considered the same issue in 1862 he said that if the body
is not of uniform temperature throughout then the expression for the entropy

must not be referred to the entire body, but only to a portion whose temperature
may be considered as the same throughout; so that if the temperature of the body
varies continuously, the number of parts must be assumed as infinite. In integrating,
the expressions which apply to the separate parts may be united again to a single
expression for the whole body.

As Clausius was breaking new ground, it’s not surprising that he did not anticipate the
‘thermally insulating rigid container’ that Fermi requires for each homogeneous part. To a
significant extent, rigorous thermodynmics treats highly idealized situations. This is seldom
a problem. In a laboratory, it is possible to construct containers that, for the states of
matter being studied, are to an excellent approximation thermally insulating and rigid. But
we do not see that sort of thing around us in the universe at large. And we do not see it in
Clausius’s words either. This must raise doubts about that part of his arguments.

In fact, there’s more to this than Fermi’s requirement that there be thermally insulating
and rigid containers. When he emphasises the significance of a state of maximal entropy,
he talks about isolated systems. Similarly, when discussing entropy and the arrows of time,
many authors say their results apply to ‘isolated’ systems when, strictly, they should say
‘insulated’ or ‘confined’. The distinction is important because conclusions that certainly hold
to an excellent approximation under laboratory conditions are then applied to the universe,
which is said to be the isolated system par excellence. But, it surely is not confined within
a rigid insulating container.

Let us continue. Clausius was very good at making important points clearly. As I already
mentioned, he was also not averse to making sure their deep significance would be noted.
Like Thomson, he knew the role well chosen words can play and had his eye on posterity. In
fact, it was only in his 1865 paper that Clausius made the shift from the ‘transformational
content’ that he had hitherto used. He said it could still be used but

I hold it to be better to borrow terms for important magnitudes from the ancient lan-
guages, so that they may be adopted unchanged in all modern languages, I propose to
call the magnitude S the entropy of the body, from the Greek word τρ oπη, transfor-
mation. I have intentionally formed the word entropy so as to be as similar as possible
to the word energy ; for the two magnitudes to be denoted by these words are so nearly
allied in their physical significances, that a certain similarity in designation appears to
be desirable.27

27In ancient Greek, entropy would mean ‘within transformation’ and energy ‘within work’.
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The passage just quoted prepares the way for the dramatic end of the paper. Clausius says
he wants to allude, at least briefly, to a subject of which “even a brief statement may not be
without interest, inasmuch as it will help to show the general importance of the magnitudes
which I have introduced”. The second law, he says, asserts that all transformations in nature
may take place in one direction spontaneously but not in the other. He says this “leads to a
conclusion to which W. Thomson first drew attention” and cites the 1852 paper discussed in
the previous chapter. Clausius ends his final significant paper on the second law with these
words:

If for the entire universe we conceive the same magnitude to be determined, consistently
and with due regard to all circumstances, which for a single body I have called entropy,
and if at the same time we introduce the other and simpler conception of energy, we may
express in the following manner the fundamental laws of the universe which correspond
to the two fundamental theorems of the mechanical theory of heat.

1. The energy of the universe is constant.

2. The entropy of the universe tends to a maximum.

Since maximal entropy corresponds to thermal equilibrium and heat death of everything,
it’s hardly surprising that the final words, expressing the second fundamental law of the
universe and coming 13 years after Kelvin’s widely noted paper, created such an impression.
Early civilizations had the concept of inescapable fate; it reappeared in the early modern age
in Calvin’s doctrine of predestination. However, in both these cases, the fate need not be
dreadful. Even if they had no influence on the matter, Calvinists could still hope they would
find themselves after death among the blessed in heaven rather than among the damned in
hell. In contrast, Clausius’s bleak statement offered no hope for the universe. It was widely
discussed in educated society and contributed to the discussion about entropic creation that I
mentioned earlier. The scientific impact was considerable. When Willard Gibbs 28 published
in 1876 the first part of his pioneering 300-page article “On the equilibrium of heterogeneous
substances” he placed at the head of it as motto Clausius’s ‘two fundamental laws of the
universe’.

The inevitability of entropy increase of the universe has been widely accepted since Clau-
sius’s ominous pronouncement. The ineluctable end in heat death seems to rest on remark-
ably secure arguments. I have already quoted Einstein on his confidence in the durability
of the thermodynamic laws. In Gifford Lectures in 1927, in which he coined the expression
‘the arrow of time’, Arthur Eddington said “The law that entropy always increases, holds,
I think, the supreme position among the laws of Nature . . . if your theory is found to be
against the second law of thermodynamics I can give you no hope; there is nothing for it but
to collapse in deepest humiliation.”

I don’t want to give you the impression that I aim to overthrow all of thermodynamics
and statistical physics; far from it. I do feel confident that there is something irreversible

28Gibbs’s contribution to thermodynamics and statistical mechanics will be important a little later in
the book. His 1876 paper greatly extended the scope of thermodynamics by making it possible to treat
substances with different chemical properties. In 1873, his paper “A Method of Geometrical Representation
of the Thermodynamic Properties of Substances by Means of Surfaces” entranced the great James Clerk
Maxwell. Maxwell enters our story in the next chapter.
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about the behaviour of the universe; I see no guarantee that in the far future it will be
hospitable for humans. But it might still be as beautiful as the brook I like to visit to watch
the falling raindrops and what the create. The otherwise circumspect Clausius may have got
carried away when, perhaps encouraged by Thomson’s paper, he turned his thoughts to the
universe. Is it easy, sensible or even possible to define an entropy of the universe? When he
defined the entropy of an inhomogeneous body, he simply said “the number of parts must be
assumed as infinite. In integrating, the expressions which apply to the separate parts may
be united again to a single expression for the whole body.”

In Carnot’s work, it is critical that the working medium is throughout confined in a box.
Clausius made truly great discoveries by studying such a medium. Only if confined can it
be carried through a sequence of equilibrium states. Clausius’s definition of the entropy of
an inhomogeous system is much less rigorous than Fermi’s. How can Clausius be sure an
entropy can be defined at all for the universe? It is manifestly very inhomogeneous. Even
with the telescopes available in the 19th century, it did not look as if it is compartmentalized
into strictly homogeneous regions separated by rigid heat-insulating walls.29

Simple-minded application of thermodynamic laws to the universe might be dangerous.
What was it Einstein said about the durability of thermodynamics? Its laws will continue
to hold “within the framework of applicability of its basic concepts”. Does that framework
include the universe?

A final comment about the direction of time, especially as applied to an isolated system
like the one considered by Fermi in the final step of his discussion. It’s a universe unto itself.
Why should the state with two boxes with different temperatures be supposed earlier than
the one in which they have equal temperatures? Neither Clausius nor Fermi are with us so
we cannot ask them. Of course, if Fermi’s system is in a laboratory, the direction of processes
within it can be defined relative to clocks in the laboratory, to the observed motion of the
sun and moon or, indeed, to the background arrow that we see all around us in the mulitude
of unidirectional processes in the universe at large. We are inside our universe and can take
our direction of time from it. But the universe itself in not inside another.

29In fact, most scientists throughout the 19th century had only the vaguest notions about the nature of
the universe. There was little interaction between the thermodynamicists and the astronomers, who were
at least learning a lot more about the stars if not yet about other galaxies. It is not even clear whether by
‘universe’ Thomson and Clausius meant all the known and as yet undiscovered celestial bodies or just the
solar system. In fact, in his pronouncement on the fate of the universe, Clausius actually used the word
Welt, which can be translated as either universe or world, the latter clearly suggesting something more than
just the earth but perhaps no more than the solar system.
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9 Statistical Mechanics

Atomic ideas arose in antiquity, but the motions attributed to atoms were never described in
precise mathematical terms. Even after Newton had formulated laws of motion for ‘bodies’
the efforts to put atomic ideas on a sound footing were fitful. In 1738 the Swiss Daniel
Bernoulli explained how the pressure exerted by a gas could be explained by impacts of its
molecules on the walls of its container. His results also indicated that the temperature of
a gas could be a measure of the vis viva, i.e., kinetic energy, of the molecules of which it is
composed.

It was only in the 1850s that these early ideas were seriously revived and taken signifi-
cantly further, initially by Clausius with a paper in 1857 bearing the title “The nature of the
motion which we call heat”.30 Although he had effective precursors in the first half of the
19th century, in particular the Britons John Herapath, John Waterston and Joule, Clausius
was the effective founder of statistical mechanics, the attempt to explain macroscopic phe-
nomena by microscopic models. Its flowering that then began continues unabated to this day.
I’m only going to describe the aspect of the subject that is needed for this book. However,
it is worth noting here that Clausius made a clean distinction between, on the one hand, the
general axioms on which he and Kelvin had founded what is now called phenomenological
thermodynamics and, on the other, statistical mechanics. This was characteristic of Clau-
sius. He rode two horses at once with some skill; as we will see, that created difficulties later
in the 19th century for the ultimate hero of statistical mechanics, Ludwig Boltzmann.

It’s fortunate for me that the key insight which led to the microscopic interpretation of
entropy was developed using the simplest conceivable models of ideal gases in a box. The
simplicity of the macroscopic laws such gases were found to obey meant that it was relatively
easy to construct models that explained the observed phenomena. Daniel Bernoulli had
already made progress in that direction. Clausius, James Clerk Maxwell, whose work I will
soon describe, and Boltzmann took things much further. The simplest models of ideal gases
had two more or less equivalent forms: either tiny hard balls that bounced off each other
elastically in accordance with the laws that Huygens had found (chapter 4) or else point
particles that interacted through short-range forces that also ensured conservation of energy
and momentum so that outside the interaction range the effect would be the same as an
elastic collision of the hard balls. Critically, the balls or particles were always assumed to
bounce off the box walls elastically.

Two thirds of Clausius’s 1857 paper consists of a general introduction in which he pro-
poses an overall qualitative picture of how he imagines the three states of matter, above all
gases, to be like. It is based fair and square on the idea, by then well supported by exper-
iment, that the different chemical elements consist of atoms that have different masses and
that, under suitable conditions, the atoms of different elements can combine into molecules to
form compounds. Reading Clausius, you soon realize that he followed the literature closely,
both in chemistry as well as in the study of gases and liquids. He certainly had an eye for
experimental results that could inform theory. One also gets the sense that Clausius had
a pretty good feel for when a theoretical idea could actually be developed to the stage at

30Brush adopted this as the title of his two-volume historical study of the kinetic theory of gases, which I
recommend strongly.
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which verifiable predictions could be made. The opening pages of his 1857 paper mark an
impressive transformation of earlier inchoate atomic ideas into a clear picture of the three
states of matter, above all gases. He had an almost unerring ability to make his conceptual
ideas just precise enough to serve as the basis for precise theoretical calculations without
being overburdened with too much detail. Since they will be sufficient for my purposes, I
will only describe results that relate to ideal gases.

Beginning with gases, he says he shares with August Krönig, whose 1856 paper had
prompted Clausius to publish ideas he had been developing already before 1850, the view
that the molecules of gases “move with constant velocity in straight lines until they strike
against other molecules, or against some surface which to them is impermeable”. He agrees
that this translational motion can explain the pressure of gases (as, in fact, Bernoulli had
already shown 120 years earlier).

However, in a decisive advance, Clausius argues that “this is not the only motion present”.
The point is that, since molecules, being composed of atoms, are conceived to be extended,
they must be capable of rotational motion which can be increased or decreased whenever two
molecules collide. There can surely also be vibrational motion corresponding to motion of the
atoms within a molecule relative to each other. Although the concept was not coined until
later by Maxwell, we can usefully introduce here the general notion of mechanical degrees
of freedom. They come in two kinds, one related to position, the other to translation from
place to place as expressed by velocity or, more precisely, momentum (velocity times the
mass of the considered body). If we consider a point particle, its position will be defined by
three coordinates. These are positional degrees of freedom. There are also three momentum
degrees of freedom associated with motion along the three coordinate directions. However,
if one has a molecule made up of two or more atoms, there are more degrees of freedom.
For example, a diatomic molecule will be like a dumbell that can rotate and vibrate, so
there are further possible motions.31 In the final third of his paper, Clausius translates these
qualitative ideas into concrete calculations for gases and obtains important numerial results,
which I shall shortly describe.

However, we can already present the picture at which he arrives. First, the pressure and
absolute temperature of an ideal gas will be proportional to the average translational vis
viva (kinetic energy) of its molecules. Moreover, the frequent collisions between molecules
will ensure that the average vis viva of the rotational and vibrational motions will, once an
equilibrium state has been achieved, be equal to the average vis viva of the translational
motion.32 Clausius also argues that in a mixtures of gases in equilibrium all molecules will

31Until quantum mechanics was discovered, physicists had great difficulty in understanding how the differ-
ent kinds of degrees of freedom manifested themselves in quantities that can be measured macroscopically.
Thus was done through the capacity of gases to take up heat, expressed as the rise in their temperature
under conditions of either constant pressure or constant volume. In the first case, the gas would expand
and do work. This would mean its temperature would rise more slowly in the first case than the second.
The difference is expressed in terms of the ratio of what are called specific heats at constant pressure and
volume. The ratio was found to be 5/3 for monatomic gases and 7/5 for diatomic gases. This result could
not be explained unless the only degrees of freedom possessing kinetic energy were the translational and
rotational ones. Physicists had to assume that for some reason, presumably rigidity in the binding together
of the atoms, vibrational motion was not excited.

32Clausius emphasizes more than once that the molecules will have a range of velocities and that it is
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on average have the same vis viva. This result is referred to as the equipartition of energy. It
means that the heavier molecules will on average have lower speeds than the lighter ones. In
the gaseous state, one can expect the average distance between molecules to be many times
greater than the diameters of the molecules.

The reason why the very simple ideal-gas model sufficed to yield the good conceptual
understanding of entropy that I discuss in this chapter and later in the book is that the
phenomena related to entropy concern the collective properties of systems which possess
many degrees of freedom. As far as the concept of entropy is concerned, the actual nature
of the degrees of freedom plays no role; what counts is the bare existence of many degrees
of freedom subject to dynamical laws of a certain kind. Moreover, the striking universality
in the behaviour of different substances used as media in Carnot-type heat-engines and in
the experiments of Joule on the mechanical equivalence of heat is explained by fact that
all degrees of freedom are subject to mechanical laws and accordingly possess kinetic and
potential energy, the transformations between which are subject to the fundamental law of
energy conservation.

Clausius was certainly right, when justifying his coining of entropy, to make it have “a
certain similarity in designation” to energy because the two concepts are “so nearly allied
in their physical significances”. By the time his claim was made (eight years after his 1857
paper), the new science of statistical mechanics had already notched up several triumphs that
strongly supported the ancient atomic hypothesis. There was now a clear microscopic picture
that could explain observed macroscopic changes. At the microscopic level there were precise
mechanical laws, above all the conservation of energy, expressed in simple mathematics that
matched the quantitative effects observed macroscopically. There was very encouraging
evidence that the dream of the pre-Socratic philosophers—to understand nature—was being
realized. And the overarching concepts involved in this process, which is still ongoing, are
energy and entropy. They reflect respectively law and number. About law and energy enough
has been said; about number and entropy, we will see that number comes in critically in two
different ways. First, in a box of gas there are a finite number of discrete things—atoms or
molecules— and, second, there are different ways in which they can be arranged.

To give you some idea of the triumphs of statistical mechanics, I will sketch the arguments
that Clausius gave to explain pressure and its relation to kinetic energy. It’s one of the
simplest successes of statistical mechanics and will give you an idea of the power that the
simplest of ideas possess. At the end of his Theory of Heat, Maxwell gives a beautifully lucid
account of several more statistical-mechanical triumphs. I will include two of them in this
chapter.

In a gas that is confined, its molecules can be expected to be moving randomly in all
spatial directions. The gas exerts pressure on the wall of its container because the molecules
are constantly colliding with the wall and bouncing off it. The things that determine the
pressure are the number of molecules that strike the wall in unit time; the momentum
of the molecules; and the angle with which they approach the wall. This last requires a
calculation to determine the effective average of all possible angles, which can be made

only the average vis viva that will be proportional to the temperature and pressure of a gas in equilibrium.
However, he made no attempt to establish what should be the distribution about the average. As we will
see, it was Maxwell, in his most important contribution to statistical mechanics, who took up that challenge.
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under the assumption that they are randomly distributed. The result obtained shows that
the pressure is what one would expect if exactly one third of the molecules collide head on
with the wall while the remaining two thirds move parallel to the wall and therefore do not
strike it and make no contribution to the pressure. Since space has three dimensions, this is
what one would expect intuitively.

The argument which shows that the pressure depends on the average energy mv2/2 and
not, as one might at first think, on the momentum mv, is both neat and nice. It is true that
the impulse given to the wall by each molecule depends on its momentum, but one must also
remember that the total impulse depends on how many molecules hit the wall in unit time.
This depends on their velocity, which means that mv must be multiplied by v, becoming
mv2.

Now it had long been known, in accordance with the ideal gas law PV = RT , that, at
constant volume, the pressure P of a gas is proportional to its absolute temperature T . It
follows from this that mv2/2 is proportional to T : since T , along with P and V , can be
measured, this means, as we shall see, that from measurements of these quantities the value
of v2 can be determined. This how it is done.

Two key quantities in the calculation are the number n of molecules in the confined
quantity of gas and the mass of each molecule. By the mid 1850s, the discoveries in chemistry
had made it abundantly clear that all the molecules of a particular gas must be identical. In
particular, they must have the same mass m. The total mass of n identical such molecules
is therefore nm, and its weight is W = nmg where g is the force of gravity. It then follows
that, if all the the molecules have the same velocity v

v2 =
3gPV

W
. (17)

All the quantities on the right-hand side of this equation can be measured, from which
Clausisus deduced the following average speeds of three sample gases at the temperature of
melting ice:

for oxygen : 461 metres/sec

for nitrogen : 492 metres/sec

for hydrogen : 1844 metres/sec

Clausius emphasized that these are average velocities; some of the molecules may have
velocities markedly different from the average. Although Clausius knew that Joule had
published a paper which developed ideas similar to his own, he did not know its contents;
in fact, Joule had obtained a broadly similar velocity for hydrogen. It may be noted that in
air, which is a mixture of oxygen and nitrogen, the speed of sound vs is not hugely different
from the above values. In dry air at 20◦C, it is 343 metres/sec.

Note also the critical role that the weight W plays in the above estimates of the transla-
tional speeds. First, it supplies experimental input without which nothing could be predicted;
second, it will play a decisive role a little later in our story by helping to put the atomic
hypothesis on a firm footing. The point is that, if the hypothesis is to be taken seriously,
it will require reliable determination of things like the mass (which is proportional to the
weight) and size of the putative atoms and molecules. When that has been determined, we
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can start to ask a question that has an amazing answer: “How many atoms are there in my
little finger?” We will then also see how ‘gifts of nature’—things in the macroscopic world
with which we can measure and objects that we can count—enable us to peep through the
window of theory into the microscopic world and count things there.

Let us continue. With the first part of his paper, Clausius had not obtained essentially
new results though nobody hitherto had derived them so clearly. In the remainder of his
calculations he broke new ground. This was based upon his earlier qualitative arguments
that one must expect the total energy of the molecules in a gas to be divided between
translational motion and motion associated with rotation and vibration of each individual
molecule. The question then arises naturally of how the total energy is distributed between
the three different forms: translational, rotational, and vibrational.

Three things made it possible to get a handle on this issue. First, various people, above
all Joule, had measured the mechanical equivalent of heat. This could be used in both
directions. If you knew by how much the temperature of a gas is raised by the addition
of a certain amount of heat, you could work out by how much the average speed of the
translational motion of its molecules is increased. As anticipated in footnote 31, a second
input can be gained from the different amounts by which the temperature of a gas rises when
heat is put into it in one of two possible ways: with the volume kept constant and with the
pressure kept constant. The former, the specific heat at constant volume, is always greater
than the latter, the specific heat at constant pressure, because some of the heat applied
is expended on mechanical work if the volume is allowed to change. The third and final
source of experimental information comes from the ideal gas law PV = RT . Using the three
available relations, Clausius could determine how much of the heat put into a gas had been
converted into the heat of translational motion of its moleclues and how much must have
gone into motions of the constituents.

The results, obtained for two broad classes of gases, were illuminating. First, for simple
gases that behave in a regular way and also for gases that arise through chemical reactions
in which there is no reduction of volume he found that the fraction of heat that goes into
translational motion is 0.6315. For the gases for which the chemical reactions that lead to
a reduction of volume the fraction is smaller with, moreover, the fraction being smaller the
greater the reduction. His conclusion, for any gas, was that

the vis viva of the translatory motion does not alone represent the whole quantity of
heat in the gas, and that the difference is greater the greater the number of atoms of
which the several molecules of the combination consist. We must conclude, therefore,
that besides the translatory motion of the molecules as such, the constituents of these
molecules perform other motions, whose vis viva also forms a part of the contained
quantity of heat.

Out of remarkably simple calculations, Clausius has already obtained a surprisingly clear
picture of what a gas must be like. It consists of molecules moving in space between collisions,
the molecules themselves being composed of a complex of atoms that can move relative to
each other in vibratory motion as well as rotating as a whole. Plato’s cave metaphor in
which he pictured mortals chained within a cave and only able to see shadows cast by beings
that pass in front of the cave opening behind them turns out to have been too pessimistic.
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The shadows that Clausius and others sought to understand were not cast from behind but
came from within containers and were cast as phenomenological macroscopic effects such
as temperature and pressure. Measurement and theory proved Plato wrong. We can make
great progress even if it never leads to a definitive understanding of the universe. But it is
a book that, as Galileo confidently predicted, we can begin to read.

Very soon after Clausius had published his paper, the Dutch meteorologist Christophe
Buys Ballot (1817-1890) pointed out what seemed to be a severe difficulty.33 He said that
if the molecules in gases move in straight lines at great speeds adjacent volumes of gases
should mix rapidly but “how then does it happen that tobacco-smoke, in rooms, remains
so long extended in immoveable layers.” Further, “if sulphuretted hydrogen or chlorine be
evolved in one corner of a room, entire minutes elapse before they are smelt in another corner,
although the particles [at the speeds estimated by Clausius] must have had to traverse the
room hundreds of times in a second.”

In response, Clausius granted that he had not specified sufficient details of his model.
He suggested that molecules should have a certain effective diameter and be separated from
each other by a definite average distance. They would then travel a certain average distance,
their mean free path, before having a collision that would deflect them significantly from their
rectilinear motion. Because of such collisions, molecules would undergo many deflections in
passing from one side of a room to another. For the same molecular speed, the time taken to
do that would be much greater than if there were no collisions. If, for example, the molecules
are separated on average by 8 times their diameters they will travel 62 times the average
separation before undergoing a strong collision. On this basis, Clausius could argue that
his model showed one could satisfy three stringent conditions at once: explanation of the
slow diffusion effects to which Buys Ballot had drawn attention; fulfilment of the ideal gas
laws; and the deviations from those laws under high pressures and densities that had been
found recently in extremely precise measurements by Henri Regnault (in whose laboratory
in Paris the youthful William Thomson had gained that valuable ‘work experience’). It was
a triumph. The notion of the mean free path entered the conceptual arsenal of theoreticians.

Clausius’s two papers, of 1857 and 1858, provided not only explanations of physical effects
but also gave theoreticians something definite on which their imaginations could work. With
his laws of motion and theory of universal gravitation, Newton had opened a wide window
onto the cosmos; Clausius did the same for the window into the microscopic world. Two
theoreticians took a really good look through it: in the remainder of this chapter I’ll describe
what Maxwell saw; in the next, the triumphs and trials of Boltzmann.

I won’t say much about Maxell’s contributions to statistical mechanics. They were nu-
merous and very important for the development of the subject but concern details that
mostly are not directly related to the main concern of this book. One however is vitally
important. I will mention it shortly but only say what it is in the next chapter, when we

33Buys Ballot made what must rank as one of the most delightful and simultaneously hilarious experiments
in physics. It was to test the effect predicted in 1842 by Christian Doppler. In the modern age, we are all
familiar with the way the pitch of police and ambulance sirens drops markedly as the emergency vehicles pass
us. Of course, no such vehicles existed in the 1840s. Buys Ballot arranged for a band of brass musicians to
stand on an open carriage of a steam train on the Utrecht–Amsterdam line. People on the station platform
through which the train passed clearly heard that the pitch of the music was higher as the train approached
and lower as it receded. If a reconstruction of the actual experiment is not on YouTube, it should be.
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come to consider what Boltzmann did with Maxwell’s contribution.
Maxwell published his first paper on the kinetic theory of gases in 1860. It opens with the

comment that so many properties of matter, especially when in the gaseous state, “can be
deduced from the hypothesis that their minute parts are in rapid motion . . . that the precise
nature of this motion becomes a subject of rational curiosity”. Maxwell’s style contrasts
strikingly with that of Clausius; he follows the tradition of Newton in the Principia of
proving rigorously a string of propositions from which profound conclusions are then drawn
in relatively few words. He notes that two essentially equivalent models can be adopted for
the ‘minute parts’ of matter: they can be represented either as centres of force or as hard
elastic bodies, it being evident, he says, that the same results will be obtained. Maxwell
opts for the second model and considers two possibilities: the elastic bodies are exactly
spherical or have a bounding surface that is not spherical. Besides reproducing results that
had already been obtained, Maxwell’s paper contained a result of fundamental conceptual
significance as well as a prediction that was so counterintuitive Maxwell himself initially
thought it disproved the kinetic theory of gases. However, in a famous experiment with his
wife, he later confirmed the prediction. This boosted confidence in the theory, which by
1865 gained widespread acceptance in its broad outlines. Attention then turned to details
into which we need not go.

To begin with this, it concerned the viscosity of gases. This is illustrated by a pendulum.
If it is set swinging in air, its initial amplitude slowly decreases until it eventually comes to
rest. This happens partly because of friction at its point of suspension and partly because
the pendulum bob has to ‘push aside’ the air it encounters during its swing. This effect of
the air’s viscosity is analogous to the effort anyone must exert when walking through water
up to their shoulders in a swimming pool. Like Maxwell, everyone assumed that the same
pendulum in a gas like air would come to rest more rapidly the denser the air. To his great
surprise, Maxwell found from his calculations that changing the density had very little effect.
However, with his wife, he performed an experiment that confirmed the prediction.34 This
boosted confidence in the theory, which by 1865 gained widespread acceptance in its broad
outlines.

Besides the remarkable vicosity result, Maxwell confirmed what Clausius had argued,
namely that the mean energies of the two different kinds of degrees of freedom in his model—
translational and rotational—should be equalized even if they are not so at some stage. Com-
paring his results for perfectly spherical hard elastic spheres with the results for nonspherical
bodies, Maxwell concluded from the measurements of the specific heats of gases that his cal-
culations seemed to be “decisive against the unqualified acceptance of the hypothesis that
gases are such systems of hard elastic spheres”.

Step by step, clever combination of theory and experiment was leading to an increasingly
clear picture of atomic phenomena. Indeed, a striking by product of Maxwell’s viscosity
calculations was his ability to estimate the value of Clausius’s mean free path. Taking for
air the mean velocity of its molecules to be 1505 feet per second, he found that the mean

34It eventually transpired that an equivalent experiment had been made nearly two centuries earlier by
Boyle using Robert Hooke’s vacuum pump. Boyle had found, to his surprise too, that a pendulum in a
chamber from which most of the air had been evacuated would swing at almost the same frequency as in
one filled with air and that the time taken for it to come to rest was much the same in the two cases.

62



2 4 6 8

0.2

0.4

0.6

0.8

1.0

1.2

Figure 5: Maxwell velocity distributions.

distance travelled by a molecule between collisions is 1/447000th of an inch, each molecule
therefore making 8 077 200 000 collisions per second. The extraordinarily large numbers
involved in the atomic hypothesis were beginning to emerge. However, this did not yet yield
an estimate of the diameter of an individual molecule—or the number of atoms in your little
finger. Some further idea would be needed to get at that.

I will conclude this chapter with the major conceptual advance that, along with the
viscosity result, Maxwell made in his first paper on statistical mechanics. Clausius had
more than once emphasized that the molecules of a gas could not be expected to all have
the same velocity; there must be some distribution of the velocities. However, he had not
attempted to find the distribution. Maxwell attacked the problem head on and in barely
two pages found the correct answer. He later admitted, in 1866, that his derivation was
‘precarious’ and provided a revised proof. The important thing is that the result has stood
the test of time. Generalized by Boltzmann to include potential as well as kinetic energy,
it provided the firm basis for all calculations for ideal gases in thermal equilibrium prior to
the discovery of quantum mechanics, in which it still plays an important role. It is known
as the Maxwell–Boltzmann distribution.35

Maxwell’s key idea was that for molecules in one dimension their velocity distribution
could be (half) the Gaussian distribution, widely known as the bell curve. In three di-
mensions, you need to calculate the velocities that follow from this assumption, taking into
account the numbers of molecules in ‘velocity shells’ of radii from zero to the maximum
possible value (when a single molecule has all the kinetic energy since it alone is moving).
Examples for different values of the energy for the same number of particles are shown in
Fig. 5. The horizontal axis is the energy of the particles, the vertical axis gives the number
of particles that have that energy. The smooth curves shown in the figure are the approxi-
mations that hold when the number of particles is very large. I need to point out that the
curves in Fig. 5 represent two quite distinct things, one of which is more fundamental than

35Like Maxwell’s judgement on his first derivation, my summary of the argument leading to it is ‘precar-
ious’. I hope to improve it if and when this text is published as a book. Once again I have to say “Caveat
lector”.
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the other.
Before I discuss them I need to point out the importance of units in the measurement of

physical quantities. One of the great services of the French Revolution was to introduce the
standard metric system for measuring times, lengths and masses. The second was defined as
the fraction 1/24× 60× 60 of the earth’s rotation period, the metre as a certain fraction of
the earth’s circumference and weights through the platinum–iridium kilogram held in Paris.
In modern metrology, these units and others used to measure things like electric charge have
been replaced by definitions in terms of more fundamental physical quantities. The most
basic change is that the second is defined in terms of one of the frequencies of the radiation
emitted by the caesium atom. This brings with it great advantages: first, quantum mechanics
ensures that all caesium atoms are identical, which means that the standard second can be
reproduced anywhere; second, the accuracy that can be achieved is remarkable. Time can be
measured more accurately than any other physical quantity. At the time of writing, the final
step to putting metrology on the most secure basis possible is a corresponding redefinition
of the kilogram. Its hitherto existing definition means that the mass of the earth, indeed
the universe, increases every two years when the platimum–iridium standard is cleaned and
a few atoms are unavoidably removed.

In the light of these comments, now consider a single collection of N particles in a box.
If they have an equilibrium distribution then it can be represented by any one of infinitely
many curves of the form shown in Fig. 5. You can pass from one to the other simply by
changing the units, for example, by replacing centimeters by inches. That clearly cannot
affect the physics in the box. The situation is quite different if there are two boxes in which
the temperatures are different. That’s an absolute fact. Whatever units are chosen, there
will be two distinct curves. If the units are changed, the curves will be shifted up and down
together in figures like Fig. 5. This is related to the fact that only ratios, of temperatures in
this case, are physically meaningful.

The more fundamental thing about the curves is related to the energy ratios of the par-
ticles within one and the same box. In whatever units have been chosen, let the average
energy of the particles be E. Then one can ask questions like this: what fraction of the par-
ticles have energies between E and 2E or between E/2 and E. These fractions, being ratios,
have values that are completely independent of the units that are used. If one determines
the values of such fractions for any of the curves in Fig. 5, they always come out the same.
All of the curves in the figure are said to be thermal, and they are identical as regards the
fractions just described. Any temperatures associated with such curves are always relative
to some arbitrary choice of units or to some other system that is in thermal equilibrium. One
can say by how much one system is hotter than another, but without such a comparison or
the existence of external units temperature by itself has no meaning. It relies on something
extrinsic to the system considered. In contrast, the notion of a thermal state is well defined
in intrinsic terms. This cannot fail to be critical if we are attempting to consider the whole
universe. For it, everything must be defined intrinsically.

There’s something more to say about the connection between Maxwell’s result and the
absolute thermodynamic scale of temperature. Through the latter, temperature is defined in
terms of mechanical work quantified by means of macroscopic objects. Maxwell’s distribu-
tion defines thermal equilibrium mechanically in terms of the kinetic energies of microscopic
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particles. Galileo’s ‘book’ (the universe) contains macroscopic words—bodies and their mo-
tions. Galileo himself, Kepler, Huygens and Newton were the first acute readers of the
sentences composed of these words. Using these sentences as guides, the first practitioners
of statistical mechanics, above all Clausius and Maxwell, were able to read messages from
another world.
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10 Boltzmann and the Second Law. I

It was in 1872 that Ludwig Boltzmann published one of the most important papers in the
development of statistical mechanics. Despite its significance, it soon led to controversy
that continued to the end of Boltzmann’s life and beyond his sad suicide in 1906. Indeed,
arguments continue to this day.

The task that Boltzmann set himself is easy to understand. It concerned the reconcili-
ation of the typical macroscopic observations made in thermodynamics, above all those of
equilibration, with the atomic–molecular hypothesis. Since equilibration will be at the heart
of our discussion pretty well throughout the remainder of this book, let’s be quite clear
what it means. You can easily see an example in a bath tub containing still water. If you
disturb the water with a few violent movements of your hands, the waves you create soon
subside. The state of equilibrium is reached. In thermodynamics, two adjacent thermally
insulated boxes containing gases at two different temperatures provide a typical example. If
an opening is made between the boxes, the gases mix and soon the temperature will have
been equalized between them. Many different kinds of equilibration can occur. I do need to
keep on making the point about systems in a box: equilibration can only take place if the
system under consideration is confined in some way or another - like water in a bath tub.

I have suggested several times how the historical development of thermodynamics may
have hindered resolution of the problem of the origin of time’s arrows. It seems to me that
a major factor was the concern with showing how a state that initially is not in equilibrium
does tend to equilibrium. What was seldom considered was how, all around us, we find
systems that are not in equilibrium. How did they get there?

It was only quite late in his studies, in the 1890s, that Boltzmann was forced to address
this question. We will come to that. In 1872, his concern, precisely stated, was this: if the
atomic-molecular hypothesis is correct, the question then arises of how equilibration takes
place, specifically, what are the molecules of a gas doing as they pass from a macroscopi-
cally non-equilibrium state to equilibrium? It had been clear to Clausius and Maxwell that
molecules with above average energies would, colliding with those with below-average en-
ergies, transfer some of their energy to slower molecules. Maxwell made some beautifully
simple calculations of actual collisions in which energy transfer takes place. They showed
how one could expect an average equilibrium distribution of the energies to be established
and maintained. By plausible arguments Maxwell had found what this distribution should
be. Striving for rigour, Boltzmann was more ambitious. He aimed to show that Maxwell
had found the only possible equilibrium distribution—there could not be any others.

The method that Boltzmann developed relied critically on the as yet unknown but surely
colossal number of molecules in any cubic centimeter of air at atmospheric pressure and
room temperature. Just as Maxwell had done, this meant one could speak in terms of a
well-defined density of molecules both in ordinary space and in the abstract space of their
possible velocities or kinetic energies. Both would be described by distribution functions.
Boltzmann made some simplifying assumptions about what he called the initial state. He
assumed that, as a result of collisions, any initial state would very soon settle down into one
in which the spatial density of the particles could be assumed uniform. He also assumed
that the kinetic-energy distribution would soon become the same at each spatial point.
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The task was then to show that whatever form the energy distribution function might have
at some initial time it would necessarily evolve eventually to the Maxwell distribution and
thereafter remain unchanged. Of course, this applied to the average macroscopic distribution
function. At the microscopic level, small fluctuations could always happen. Boltzmann was
able to find an equation that should govern the equilibration process and would indeed,
whatever the initial distribution, lead to the Maxwell distribution. The equation soon became
known as the Boltzmann equation and proved its utility and viability in many calculations
involving countless different processes. It is one of the most important equations in physics.
For example, cast in a form that takes into account quantum effects, it plays a hugely
important role in the description of processes that take place in the early universe though,
rather remarkably, it is used in that context to describe how the medium that permeates the
universe comes out of equilibirum.

Apart from this case, which plays a central role in The Janus Point, the important thing
about the Boltzmann equation is that, by its very construction, it has an inbuilt tendency
to reduce deviations from the Maxwell distribution. Unlike the time-reversal symmetric
equations taken to describe the collisions of microscopic particles, Boltzmann’s equation is
time-asymmetric.36 It was some time before the implications of this mismatch sank in. When
they did, they very soon prompted Boltzmann to his greatest contribution to physics. That
will be the topic of chapter 12; in the remainder of this chapter I will say a bit more about
his 1872 paper and the remarkable consequences of a device he introduced in it to simplify
and clarify his equations.

Boltzmann’s equation was not his only innovation. In one of his most important contri-
butions, he introduced a quantity which later came to be called the H function. He proved
a result about the behaviour of this function that became famous and is known as the H
theorem. In essence, the H function is a measure of the deviation of the current energy
distribution from the Maxwell distibution for the same total energy of the system. To get a
picture of this in concrete terms suppose the curve of the current distribution superimposed
on the Maxwell distribution. The two curves will not overlap—there will in general be closed
areas between the two curves. The value of the H function is a measure of the sum of these
areas. It will tend to zero as the current distribution gets closer and closer to the Maxwell
distribution. Boltzmann interpreted such an effect as a microscopic mechanical explanation
of the way the entropy of an isolated system tends to a maximum. The actual relationship
between the H function and entropy will be an important part of chapter 12.

For the moment, it is sufficient to say that the calculations which Boltzmann made
using the equation he had derived confirmed his anticipation. He was able to show that his
H function did have an inbuilt tendency to decrease. Boltzmann was naturally delighted
about this for two reasons. First, growth of entropy was profoundly significant both in
fundamental natural science as well as for technical issues; an understanding of it at a deep
level must mark a major advance (Boltzmann published his H-theorem paper seven years

36There was nothing wrong with the theory of individual collisions. The problem lay in an implicit
assumption, made by both Maxwell and Boltzmann, that concerned the delicate issue of the probability of
collisions. It was this that transformed the time-symmetric theory of the collisions into the time-asymmetric
theory that Boltzmann inadvertently developed. It is nevertheless remarkable how valuable Boltzmann’s
theory, when applied appropriately, has proved to be.
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after Clausius’s epoch-making paper in which he coined the word entropy). Second, and not
unrelated, Boltzmann was strongly attracted to the atomic hypothesis and welcomed what
he regarded as evidence in support of it.

Let me now turn to the device Boltzmann introduced as to way to think about his distri-
bution function. It turned out to be very valuable and has come to be called coarse graining.
Instead of assuming that each particle could have any value of the energy, Boltzmann as-
sumed that they could only have energies that are multiples of some very small quantity ε.
Thus, the possible values of the energy for any individual particle would be

0, ε, 2ε, 3ε, . . . pε, (18)

where p (a very large integer) and ε are chosen such that pε is equal to the total energy E
of the system of N particles. If one particle should happen to have all the energy, then of
course all the remaining N − 1 particles could have no energy at all. In the general case, the
energy would be distributed between many particles. Then there could be n0 with no energy,
n1 with the energy ε, n2 with 2ε, etc, up to np with energy E. Of course, not all of these
numbers could have arbitrary values. They must satisfy two conditions. First, the total
number of particles must be N ; thus, the numbers n1, n2, etc must add up to N . Second,
the total energy must have the fixed value E.

Choosing values for E, p, ε and all the n1 one can obtain a value of the distribution
function at some time. One can represent this pictorially by means of p+ 1 ‘bins’ arranged
in a line into which one can place as many particles as have the energies 0, ε, 2ε . . . pε, the
first bin giving the number that have no energy at all. The heights of the bins correspond
to the number of particles with corresponding energies. The differences of the heights from
the Maxwell distribution are a measure of the value of Boltzmann’s H function.

Now collisions of the particles in an actual gas will give rise to changes in the energies of
the particles. In the coarse-grained picture, they will lead to a redistribution of the particles
between the energy bins. Unaware of the implicit assumption he was making, Boltzmann
derived a ‘coarse-grained’ form of his equation and, using it, showed how an initial non-
equilibrium distribution would tend to the Maxwell distribution.

At this point, I want to quote a few truly remarkable sentences in which Boltzmann
justified his coarse-graining method. I came across them when reading Boltzmann’s 1872
paper. I always like to go back to originals. They are often clearer than second-hand accounts
and give one insights into the great personalities who created the edifice of modern science.
Having explained that, purely for mathematical convenience and clarity, he would assume
the particles could only have the discrete energies (18), this is what Boltzmann said about
the conditions he would impose:

No molecule may have an intermediate or a greater kinetic energy. When two molecules
collide, they can change their kinetic energies in many different ways. However, after
the collision the kinetic energy of each molecule must always be a multiple of ε. I
certainly do not need to remark that for the moment we are not concerned with a real
physical problem. It would be difficult to imagine an apparatus that could regulate
the collisions of two bodies in such a way that their kinetic energies after a collision
are always multiples of ε. That is not the question here. In any case we are free to
study the mathematical consequences of this assumption, which is nothing more than
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an artifice to help us calculate physical processes. For at the end we shall make ε
infinitely small and pε infinitely large, so that the series of kinetic energies given in
(18) will become a continuous one, and our mathematical fiction will reduce to the
physical problem treated earlier.

Boltzmann wrote these words nearly 30 years before the discovery of quantum mechanics,
which shattered the belief which had held sway at least since Leibniz had said nature never
makes jumps (natura non facit saltus). There was clearly not the remotest thought in
Boltzmann’s mind that jumps actually occur in nature. Nevertheless, the quoted passage
is ironic to say the least, especially the difficulty of imagining an ‘apparatus’ that could
regulate the required organizational feats; for that is exactly what quantum physicists had
to do—and it took a quarter of a century of the most intense theoretical and experimental
work by many brilliant physicists to do it. To boot, to this day nobody knows what the
hugely impressive structure and successes of quantum mechanics really mean and whether
and how jumps actually happen.

In fact, the above passage and its artifice are even more ironic in that they played a
crucial role in the discovery of quantum mechanics. It’s a case of irony piled on irony. As
we will see, Boltzmann’s belief in the atomic–molecular hypothesis came under particularly
intense criticism in Germany and Austria in the 1890s. This was due to the strong influence
of the positivistic philosophy of science that had developed and which argued that the goal of
science should not be to propound theories that explain phenomena but merely to describe
phenomena and identify universal patterns in them. In particular, several influential figures
argued that thermodynamics should be concerned solely with general principles of the kind
espoused in particular by Clausius in his early papers before he turned to statistical atomic–
molecular explanations of them.

One such person was the German Max Planck (1858-1947); he published an important
textbook Thermodynamik in 1897 in which, while granting the successes of the atomic–
molecular theory, argued the case for developing thermodynamics on the secure foundations
provided by the repeated failure of the attempts to build perpetual-motion mations of either
the first or second kind. In 1899 he turned his attention to the outstanding problem of
understanding the nature of the thermal equilibrium of radiation in furnaces. For technical
reasons it was called the problem of black-body radiation. Remarkably, the best available
theory at that time suggested the energy in such an equilibrium state should be infinite, in
complete contradiction to the fact that a loaf of bread could be baked in an oven heated by
a few logs of wood.

Planck, who does not seem to have been aware or concerned about this problem, was
well aware of Boltzmann’s statistical ideas and his trick to implement them by introducing
discreteness artificially. Thinking the statistical approach was not the way to go, Planck first
attempted to solve the problem without using statistics and failed. Seeing no alternative,
he turned to the statistical ideas of Boltzmann and, literally in desperation, took his artifice
for reality. He introduced discreteness as a fundamental feature of nature. Suddenly he
obtained a formula that reproduced the observations of black-body radiation perfectly. His
paper, published rather appropriately in 1900, ushered in the quantum age and won him the
Nobel Prize for physics in 1918. Sadly, it seems Boltzmann did not learn about or recognize
what Planck had done and hanged himself in 1906 unaware of the momentous consequence
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of his device of 1872, not that anyone else apart from the youthful Einstein had come to
sense the implications of Planck’s paper.
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11 Maxwell’s Demon and Thomson on Time

Nowhere in his 1867 paper does Maxwell comment on the mismatch between time-symmetric
microscopic collisions and macroscopic equilibration. However, a letter he wrote in 1868 to
his friend Peter Guthrie Tait 37 shows he understood the problem very well. He first stated
it publicly in his beautiful book Theory of Heat published in 1871. Near the end, he says

it is impossible in a system enclosed in an envelope which permits neither change of
volume nor passage of heat, and in which both the temperature and the pressure are
everywhere the same, to produce any inequality of temperature or pressure without
expenditure of work. This is the second law of thermodynamics, and it is undoubtedly
true as long as we can deal with bodies only in mass, and have no power of perceiving
or handling the separate molecules of which they are made up.

He continues

But if we conceive a being whose faculties are so sharpened that he can follow every
molecule in its course, such a being . . . would be able to do what is at present impossible
to us. For we have seen that the molecules in a vessel full of air at uniform temperature
are moving with velocities by no means uniform, though the mean velocity of any great
number of them, arbitrarily selected, is almost exactly uniform. Now let us suppose
that such a vessel is divided into two portions, A and B, by a division in which there
is a small hole, and that a being, who can see the individual molecules, opens and
closes this hole, so as to allow only the swifter molecules to pass from A to B, and
only the slower ones to pass from B to A. He will thus, without expenditure of work,
raise the temperature of B and lower that of A, in contradiction to the second law of
thermodynamics.

Thus, unlike the law of gravity, the second law does not have a fundamental status. It
is statistical in origin, relying for its validity on the presumed huge number of molecules in
any finite measureable amount of gas.

In 1874, in a paper I will discuss in this chapter, Thomson called Maxwell’s hypothetical
being a Maxwell demon. The catchy name has helped to ensure that the issue it raises still
generates much interest, but I won’t discuss it because it does not directly address our central
concern: why is it that processes which unambiguously single out a common direction of time
are so ubiquitous in nature? Note that, as formulated (in Thomson’s form) by Maxwell, the
second law refers to what one cannot do with an equilibrium state. How the non-equilibrium
states that we find all around us might have arisen is not addressed.

We now come to the reaction to Boltzmann’s 1872 paper. The first was probably Thom-
son’s 1874 paper just mentioned; I say probably because it does not mention Boltzmann
though Thomson, Maxwell and Tait were well aware of his work. Thomson’s paper begins
with a graphic image:

37 It is striking that thermodynamics as a theoretical discipline and its interpretation in terms of statistical
mechanics was very largely the work of the Scots-Irish Thomson, the Scots William Rankine and Maxwell, the
German Clausius and the Austrian Ludwig Boltzmann. As is still often the case, the continentals invariably
referred to the Scots as English, while the Scots called Boltzmann a German.
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The essence of Joule’s discovery is the subjection of physical phenomena to dynamical
law. If, then, the motion of every particle of matter in the universe were precisely
reversed at any instant, the course of nature would be simply reversed for ever after.

I don’t think the implications of time-reversal symmetry had been expressed so clearly
before. Note, however, that Thomson’s “for ever after” seems to presuppose Newtonian
time that continues to flow in its wonted forward direction. This conjures up an image of the
divinity watching an autonomous river of time continuing to roll forward as all the motions
in the universe are instantaneously reversed. In fact, we can imagine ourselves having the
divinity’s experience when we watch a film run backwards. Our thoughts run forwards, like
the river of time, while the diver comes backwards out of the swimming pool.

But, leaving aside these manifestly atypical and fully explicable experiences, we, as beings
within the universe, can only register, entirely within our consciousness, the background
arrow of the innumerable unidirectional phenomena that surround us. Relative to that
arrow we readily recognize reversal of any localized motion, as when the film of a diver is
reversed but not the forward train of our thoughts or anything else we can see, say an usher
showing somebody to their seat, as we sit in the cinema.

I only come to this at the end of The Janus Point, but I want to mention here psy-
chophysical parallelism. The notion had precursors (going back at least to Galileo), but it
came to especial prominence in the Principles of Psychology published in 1890 by William
James (older brother of the novelist Henry James). According to it, all perceptions in our
consciousness have counterparts in processes in the brain. Putting the idea as simply as I
can, a divinity should be able to ‘see’ how the background arrow in the material universe
at large induces, through standard physical processes, an arrow in the physical processes in
our brain, which then somehow, through the mystery of consciousness, then becomes our
personal psychological arrow.

If we accept this picture, the question then arises of how we are to think about the
background arrow. Where precisely, in the material world, is it to be found and how is it
to be recognized? What form does it take? Before I attempt to answer this question, I’ll
continue with what Thomson, after spelling out the purely physical implications of precisely
reversing the motion of every particle of matter in the universe, said about the consequences
for us:

And if also the materialistic hypothesis of life were true, living creatures would grow
backwards, with conscious knowledge of the future but no memory of the past, and
would again become unborn.

Driven I imagine by his religious conviction, Thomson then says “But the real phenomena
of life infinitely transcend human science; and speculation regarding consequences of the
imagined reversal is utterly unprofitable.”

But Thomson had just said what they are! Nevertheless, I struggle to understand what
he meant. I think his “grow backwards” and “conscious knowledge of the future but no
memeory of the past” must refer in his mind to some absolute river of time as the ultimate
arbiter. However, the critical question is this: what would be the actual experience of the
living creatures?
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The question boils down to this: what form does the relevant information take? Suppose
we insist it takes concrete form. Since neuroscience is still in a state of relative infancy,
let’s look to geology for help. This is the science in which the notion of deep time first
took root. Geologists came to the conclusion that the earth must have a past that extended
over an immense duration into the past by looking at the rich, effectively static structure it
exhibited at their time. In the book by Burchfield on which I drew on in chapter 7 I came
across a wonderful comment of Jean-Baptiste Lamarck (1744-1829), the well-known precursor
of Darwin as a theorist of evolution. For the same reason as Darwin, this directed him to
an interest in geology and led him to assert that the earth’s surface is its own historian. In
other words, if the earth were aware of its own instantaneous structure at any instant, it
would have memories of its past and anticipate a future.

This suggests to me, as I argued in my The End of Time, that a sense of forward
progression in time (and even of motion), might be stored in information about positions
alone. If this is the case, Thomson’s ‘living creatures’ would be oblivious to the reversal
of all motions that he conjectured. Experience, with all its rich awareness of both being
and becoming, would have its psychophysical parallel in static structures, time capsules as I
define them in chapter 1 of The Janus Point (and earlier in The End of Time).

Elsewhere in the paper Thomson considers a situation, worth looking at here, in which
motions are reversed in only a restricted part of the universe. For this he calls up in imag-
ination a whole army of Maxwell demons and, so that they can precisely reverse particle
velocities, arms them with molecular cricket bats!

He first considers a situation in which a very large number of particles initially have the
same temperature on two sides of a vessel but then, through the action of demons, come to
have unequal temperatures. The demons then cease their intervention, so that the average
result of the free motions and collisions of the particles “must be to equalize the distribution
of the energy among them in the gross”. Then, at a later time when the temperatures in
the two halves of the vessel have been effectively equalized on average,

let the motion of every particle become instantaneously reversed. Each molecule will
retrace its former path, and at the end of a second interval of time, equal to the former,
every molecule will be in the same position, and moving with the same velocity, as at
the beginning; so that the given intial unequal distribution of temperature will again be
found, with the only difference that each particle is moving in the direction reverse to
that of its initial motion. This difference will not prevent an instantaneous subsequent
commencement of equalization, which, with entirely different paths for the individual
molecules, will go on in the average according to the same law as that which took place
immediately after the system was first left to itself.

The italics here are mine. In the context of his example of particles confined to a vessel,
the argument is in fact very simple and probabilistic in nature. Collisions among a very
large number of particles in a perfectly rigid vessel will almost certainly very soon equalize
temperatures on average and this will, with almost equal certainty, happen for the two overall
possible directions of the particle motions.

However, in a clear anticipation of a situation that confronted Boltzmann with severe
difficulties two decades later, Thomson notes that in the vessel he considers spontaneous
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disequilibration “certainly will happen in the course of some very long time”, this being
longer the greater the number of particles in the vessel. So far as I know, this is the first
recognition of the possible occurrence of spontaneous disequilibration within the study of
statistical mechanics. There is also an interesting passage near the end of the paper where
Thomson comments that if the rigid isolation of the vessel is removed and the number of
molecules in the universe is infinite then disequilibration will never occur. He was clearly
pleased with his argument because he said of it “This one instance suffices to explain the
philosophy of the foundation on which the theory of the dissipation of energy rests.”

Note that in drawing his conclusion Thomson relied on two things: increase without limit
in the number of particles capable of dynamical interaction and an implicit assumption that
the conditions in the universe outside the vessel are essentially the same as in the vessel.
Challenging this assumption is the point of departure of my proposed explanation of time’s
arrows in The Janus Point. But we can already see a problem. Quite apart from the fact
that he cannot have had any concept of the universe significantly clearer in 1874 than his
one of 1862, Thomson’s theory and his conclusion drawn from it would seem, at least at
first glance, to imply that thermal equilibrium must be maintained everywhere and at all
times in the universe. How did it come about that in Thomson’s time, as now, the earth
was manifestly suitable for habitation? There’s a gap at the heart of his theory.
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12 Boltzmann and the Second Law. II

It’s time to move on. If Thomson did not mention Boltzmann’s H theorem of 1872, Boltz-
mann failed to mention Thomson’s 1874 paper in two papers in 1877. The second of these
was particularly important. It did not solve the mystery of entropy increase, but it did lead
to a beautiful microscopic concept of entropy. Applied in a slightly modified way, it plays a
central role in The Janus Point.

Boltzmann was prompted to his entropy concept—his most important contribution to
physics—in response to a comment by his friend and colleague Josef Loschmidt, who in 1869
had already proposed a Maxwell-type demon which he hoped would overcome the disturbing
implications of the second law. In 1877 he published a paper on the thermal equilibrium
of a system of bodies subject to gravitational forces 38 and gave some examples of special
initial conditions for which Boltzmann’s H theorem certainly will not hold. On this basis,
he claimed that his considerations

also destroy the terroristic nimbus of the second law, which makes it appear to be a
destructive principle for the totality of life in the entire universe. At the same time
this would open the consoling perspective that mankind is not entirely dependent on
the intervention of coal or of the sun as regards the conversion of heat into work, but
that there will be a never ending supply of convertible heat at our disposal for all time.

Loschmidt’s ‘terroristic nimbus’ (which, in the translation I have quoted, should perhaps
have been ‘terrifying nimbus’) gives some idea of the impact that the second law had made
on many people. However, his hopes for the salvation of mankind were far too optimistic. His
examples were, to say the least, artificial and required what is now called fine tuning—purely
theoretically they are conceivable but in practice not capable of realization. An example he
gave was of perfectly round elastic bodies on a perfectly straight line with velocities exactly
along the line. Such a state could be maintained but only if set up with perfect accuracy.
And what existence of any interest could be realized with such a scheme?

Much more valuably and apparently unaware of Thomson’s 1874 paper, Loschmidt made
a comment that stimulated Boltzmann in much the same way that Buys Ballot’s intervention
had enabled Clausius to greatly strengthen the case for atomism. Loschmidt simply remarked
“Evidently quite generally in any system the entire course of events becomes retrograde if at
a certain moment the velocities of all its elements are reversed.” This is, of course, exactly
what Thomson had said in 1874 and, as we will see, led him to insights that anticipated
important developments in the 1890s. In Boltzmann’s case it led to his greatest contribution
to physics and to an equation that some regard as on a par with Einstein’s E = mc2.

Loschmidt’s comment came to be known as the reversibility paradox. Given any possible
state of a system of particles, defined by their masses, positions and velocities, there will

38Loschmidt’s gravitational forces introduced a quite new element into statistical mechanics. They play
an important role in The Janus Point. Loschmidt was also the first person to estimate the size of molecules.
He did this by combining Maxwell’s estimates quoted earlier for gases with the assumption that in the liquid
state the molecules are closely packed together. This enabled him to estimate the number of atoms in a
given mass of substance. In English literature this is known as Avogadro’s number, but, understandably,
the Germans call it the Loschmidt Zahl (number).
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always be a state paired with it in which the positions are the same but all the velocities are
exactly reversed. This manifest symmetry might lead one to expect a decrease as as often
as an increase of entropy. One never does. That’s the paradox.

Boltzmann responded promptly, noting that to apply the laws of mechanics, it is not
sufficient to know how the forces act. The initial positions and velocities must also be
known. Without them it would be impossible to prove that entropy must always increase.
The reversibility already noted by Thomson and now by Loschmidt makes that clear: if
entropy increases for a given set of initial conditions, reversal of all velocities at some later
time will result in a decrease of entropy. Boltzmann makes no mention of the difficulty this
poses for his H theorem, but brings in a quite new issue: the probability of possible initial
states.

He does this for an example that complements significantly his considerations in 1872 and
illustrates the generality of the entropy notion. For the H theorem he had assumed a system
of particles that already had a uniform spatial density and a distribution of velocities the
same in all directions. He had only considered how the velocity distribution would change in
time and tend to Maxwell’s. He now considered “a large but not infinite number of absolutely
elastic spheres that move in a closed container whose walls are completely rigid and likewise
absolutely elastic.” No external forces act on the particles.

He then supposes that at some initial time the distribution of the spheres is not uniform.
Then without knowing the initial conditions one cannot say the spheres will become more
uniformly distributed. For if they do, one could take the state at which they have become
much more uniform and simply reverse the velocities at that instant. Then “the spheres
would sort themselves out” in such a way that they became non-uniform.

Thus a proof that after a certain time “the spheres must necessarily be mixed uniformly”
whatever the initial state cannot be given. He says that this is a consequence of probablility
theory “for any non-uniform distribution, no matter how improbable it may be, is still not
absolutely impossible.” This is a fact about probabilities. For example in a game of Lotto
the chance of turning up the seemingly improbable sequence 1,2,3,4,5 is just as likely as any
other sequence of the five numbers. In a critical passage, he says:

It is only because there are many more uniform distributions than non-uniform ones
that the distribution of states will become uniform in the course of time. One therefore
cannot prove that, whatever may be the positions and velocities of the spheres at the
beginning, the distribution must become uniform after a long time; rather one can only
prove that infinitely many more initial states will lead to a uniform one after a definite
length of time than to a non-uniform one.

The key comment here is “there are many more uniform distributions than non-uniform
ones”. There was surely little difference between Thomson’s and Boltzmann’s intuitions
as to why non-uniform states will evolve to uniform states. The decisive difference is that
Boltzmann goes beyond intuition and expresses things quantitatively. Indeed, soon after the
quoted passage he actually speaks of numbers of states and makes one of the most important
observations in the history of physics: “One could even calculate, from the relative numbers
of the different state distributions, their probabilities, which might lead to an interesting
method for the calculation of thermal equilibrium.” He wasted no time in doing just that
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by counting states in the very next issue of the journal. The method by which he did it is
so simple.

We must remember that any collection of particles has two distinct kinds of distribution:
one of positions in space, the other of kinetic energies. They need to be handled in different
ways. In 1877, Boltzmann’s main interest was the kinetic energies. The prize he was after was
the Maxwell distribution and why it must be established eventually if the energy distribution
is initially non-Maxwellian. Because quantities that vary continuously are difficult to handle
in probabilistic terms, I defer that to the next chapter and here employ Boltzmann’s trick
and consider only discrete quantities. Let’s begin with spatial distributions.

Number a chequerboard’s squares from 1 to 64. Number, say, 48 chequers from 1 to
48 and think about all the ways they can be distributed on the board. Any number can
be put any one square. The most non-uniform way to do that is to put all the chequers
on just one square. There are 64 ways to do that, one for each square. However, if we
are only interested in how uniform our distribution ‘looks’, all of the possibilities look the
same whatever the square on which the pile is placed and there is only one maximally non-
uniform distribution. In quantum mechanics, situations like this second one come into play,
but I will stick with the first. It corresponds to what is called Boltzmann statistics and is
valid when quantum effects can be ignored. Of course, quantum mechanics also introduces
discrete effects, but here, as in Boltzmann’s original studies, discretization, which reduces
the problem to counting permutations, is used as a trick to clarify an underlying idea and
permit some simple calculations that are later to be made more rigorous.

Next we can put all the chequers on just two squares. This hugely increases the possibili-
ties. First, there are 64×63 = 4032 possible choices of the two squares. Call them A and B.
Among the 48 chequers, we can initially choose one and put it on A and all the rest on B.
There are 48 ways to choose a single chequer. But we can also put two on A and 46 on B.
There are (48×47)/2 = 1128 ways of doing that; you divide by 2 because the order in which
you put the two chequers on A leads to the same distribution. To get the total number of
possibilites, you must multiply the 1128 by the 4032 ways of choosing the two squares. By
the time you get down to equal division, 24 on A and 24 on B, the number of permutations
is vast, astronomical. And that’s with 64 chequers. With Avogadro’s number 6.022 × 1023

the tally is barely conceivable.
At this point a different kind of chequerboard that is a better model for the universe

should it be, as is not impossible, closed up spatially on itself in three dimensions like the
earth is in two. To model that ‘chequerboard’ could be the surface of a sphere divided into
areas, say four equal segments by two lines of longitude from one pole to the other and
90◦ apart at the poles. These four segments could in turn each be divided in two along
the equator, giving a ‘chequerboard’ with eight ‘squares’. The same game of permutations
can be played it. An advantage is that this board has no ‘special squares’, unlike a real
chequerboard with its four distinguished squares in each corner and more along the edges.

The next thing to discuss is the way Boltzmann actually counted states and the number
of ways in which they can be realized. For this, we need the modern names macrostate and
microstate for his two fundamental concepts.

Suppose, for any finite number N of chequer squares, labelled i = 1, 2, . . . N , we have a
finite number P of chequers distributed on them. For some distribution, let the number of
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chequers on square i be ni. The numbers ni define the macrostate of the chequers. Now,
supposing they all have their own individual nature, let’s give the P chequers the names
a, b, c, .... Each different way in which they can be laid on the N squares to give the same
numbers ni of the macrostate just considered defines one of its possible microstates. In
general there will be many different microstates that give the same macrostate. (Boltzmann
called the number of microstates corresponding to a given macrostate its complexion). I
will shortly give, for the case of energy distributions, the macrostates and numbers of their
microstates that Boltzmann actually gave in 1877 for the example of seven particles.

Now because we have a finite number of chequers and a finite number of squares, the total
number of distinct macrostates is finite. The same is true of the microstates. Let the total
number of microstates be mtot; it is much greater than the number M of macrostates. The
final step to Boltzmann’s 1877 notion of entropy brings in probability. For each microstate,
let us put lottery balls in a bag bearing a name that identifies it together with the macrostate
to which it belongs. The chance of drawing a particular microstate is 1/mtot. If the number
of microstates that belong to macrostate Ma is ma, the chance that a microstate drawn
at random belongs to macrostate Ma is ma/mtot, i.e., it is the number of microstates that
belong to Ma divided by the total number of microstates. If one makes the assumption
that all microstates are equally probable, ma/mtot is the probability of the corresponding
macrostate. I will discuss later the conditions under which it is reasonable to assume that
all microstates are equally probable. The issue has generated much debate.

Boltzmann’s insight in 1877 was that it is the ratio ma/mtot that determines the entropy
of the considered macrostate. In fact, subsequent development showed that it is very sensible
to define the entropy of a macrostate as the logarithm of the number of microstates that
it contains. This has to do with a property of probabilities of independent events: if the
probability of event a is pa and of the independent event b is pb, then the probability that
both a and b will occur is the product papb. Now the logarithm of a product is the sum of
the logarithms of the individual terms in the product, log papb = log pa + log pb, and in phe-
nomenological thermodynamics it is found experimentally that the entropy of independent
systems that are then combined is the sum of their individual entropies. This matches beau-
tifully the probabilistic count-of-microstates nature of entropy that Boltzmann discovered.
It is for this reason that the famous expression for entropy,

S = k logW, (19)

where k is the dimensionful Boltzmann’s constant and W stands for Wahrscheinlichkeit
(probability), is engraved on Boltzmann’s tombstone in Vienna. Ironically, the equation was
never written down by Boltzmann; it is due to Max Planck.

Before we move on, I’d like to recall what I said about Clausius being more than justified
when he coined the word ‘entropy’ to make it have “a certain similarity in designation” to
energy because the two concepts are “so nearly allied in their physical significances”. One
of Richard Feynman’s best known quotations is this:

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one
sentence passed on to the next generation of creatures, what statement would contain
the most information in the fewest words? I believe it is the atomic hypothesis that
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all things are made of atoms—little particles that move around in perpetual motion,
attracting each other when they are a little distance apart, but repelling upon being
squeezed into one another. In that one sentence, you will see, there is an enormous
amount of information about the world, if just a little imagination and thinking are
applied.

Ultimately, the notion of entropy can be defined because the atomic nature of matter,
Feynman’s great truth condensed into a single sentence, introduces discreteness and the
possibility of counting, while conservation of energy reflects the lawful manner in which
discrete things can be rearranged.

Returning to Boltzmann’s key idea, it should be said that there is a certain ‘fuzziness’
about the notion of entropy, both at the macroscopic and microscopic level. This relates
to the definition of macrostates, which can be made more or less restrictive. This need
not concern us here; I will say something about it later in the book. The question of how
continuous distributions are to be treated will be discussed in the next chapter.

Now we come to the important difference between entropy calculations for spatial and
energy distributions. For the former, the chequers and squares are all on an equal footing. A
checker looks the same whatever square you place it on. The same is true for the position of
an atom in a box. However, it’s quite diffferent when possible kinetic energies are considered.
Here it is in principle possible that one single atom has all the kinetic energy. It then belongs
to just one ‘square’ that has an energy value equal to the total energy available. No kinetic
energy remains for any of the other atoms. They must all sit on the ‘zero-energy’ square.
This skews the distribution.

Boltzmann gave a remarkable example of this in his 1877 paper. He considered a system
of just seven particles and supposed the total energy to be divided up into seven quanta
distributed among the particles. In this case, the checker board is replaced by a row of eight
‘bins’ labled 0, 1, 2, . . . 7. All particles that have no kinetic energy go into bin 0; those with
one quantum of kinetic energy (there can be up to seven of them) go into bin 1; particles
with two quanta go into bin 2 (there can be at most three of them with one particle in bin
1) and so on. Finally, if one particle has all the energy it goes in bin 7 and the remaining
six go in bin 0.

In Boltzmann’s example with seven particles, there are 15 different macrostates and 1716
microstates. One macrostate has just one microstate—the one in which all particles have one
quantum of energy. Another macrostate has seven microstates; it is the one in which just
one particle, for which seven choices can be made, has all the energy and all the remainder
have none. One macrostate has 420 microstates. In it, three particles have no energy quanta,
two have one quantum, one has two quanta and one has three quanta. Two macrostates
have 210 microstates each. Two have 140; five have 105; and three have 42. Thus, just
three of the macrostates have 840 out of the total of 1716 microstates: that is only very
slightly less than half the total. Boltzmann’s seven-particle macrostate with 420 microstates
already approximates the Maxwell distribution surprisingly well. Only a modest increase
in the number of particles would be sufficient to get impressively good agreement. Note
also the point I made earlier: all Maxwell distributions are identical if one only considers
the relative distribution of energies between the particles. In his seven-particle model, the
numbers that define the macrostates correspond only to fractions of the kinetic energy, not
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the total amount of it.
At this point I need to clarify the conditions under which the kind of combinatorial

arguments that Boltzmann employed are valid. There’s no problem with actual numbers, for
example, the 48 chequers and 64 squares in my example or the seven particles in Boltzmann’s.
Any finite positive integers for the numbers can be chosen and ‘the game’ played with them.
In contrast, what is essential is the situation in which those numbers can be chosen. In
the statistical mechanics developed from the 1850s, the number of chequers corresponds to
the numbers of atoms or molecules assumed to be present in a box. When defining their
models, all practitioners of the discipline assumed a large but finite number of particles. The
subsequent discovery of quantum mechanics showed that this was not problematic; what
then was important was not so much the number of particles but the number of quantum
states. Somewhat more problematic for the pre-quantum era is Boltzmann’s sub-division
of the main ‘container’ into coarse-graining boxes. For a given number of particles, this
will always lead to ambiguity in any quantity used to define the uniformity of the particle
distribution. In modern treatments this is usually overcome by a device called ‘going to
the thermodynamic limit’. In the model with chequers, which is all I need to make the
conceptual issues clear, the issue does not arise.

The real issue is this: is the model with a container likely to be a good model of the
universe? Before I address this question, let me review what were the main aims behind the
development of statistical mechanics. They began with attempts to explain by means of the
atomic hypothesis the observed macroscopic properties of ideal gases confined to some kind
of box and in the state of equilibrium. This project made significant progress in the two
decades up to Boltzmann’s H theorem paper of 1872. This modified the original programme,
giving it a new goal that was both clear and simple in its aspiration: to show why a system
initially out of equilibrium would, under the assumption the particles of the system are
governed by simple mechanical laws, tend to the equilibrium state. This process is called
equilibration. We observe many examples of it all around us. Maxwell gave the nice example
of a cold silver teaspoon put into a cup of hot tea: the handle soon becomes warm, indeed
hot. The spoon and the tea come into equilibrium. It may be noted that if the tea is not
drunk, it and the spoon will in time come to have the same temperature as the air in the
room. This process of equilibration in a larger background is still effectively taking place in
a box, though it is one that is not perfectly insulated.

But now suppose that, in otherwise empty space, we have gas particles in a box that are
not in equilibrium. Let the walls of the box be removed. The particles will simply fly out
into empty space. They will never equilibrate and instead become dispersed through the
void of empty space. The question now arises of what remains of the insights and results of
the statistical mechanics that Clausius, Maxwell and Boltzmann developed.

I have not made anything remotely like an exhaustive search through the statistical-
mechanics literature, but I have looked at much of it devoted to its application to the issues
around the arrows of time. I have not seen one single reference to what might be expected if
one cannot rely on a box to confine the gas. There is, however, what seems to me a significant
remark in the ‘bible’ of statistical mechanics. This is the Elementary Principles in Statistical
Mechanics, developed with especial reference to the rational foundation of thermodynamics
published in 1902 right at the end of his life by J Willard Gibbs, whose important earlier work
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has already been mentioned. In his book, he treats dynamical systems with great generality
but says he does need to introduce two restrictions, namely that the system cannot be allowed
to spread out in an infinite space or have velocities that can grow faster than a certain rate.
The reason for this is that he wants to introduce probabilities, and these would lose meaning
if he did not impose the restrictions. In this connection, he notes that in thermodynamics
a system that can disperse through infinite space cannot attain an equilibrium state. It is
clear that as regards the spatial restriction Gibbs is effectively introducing a conceptual box.
There is also a ‘box’ for the velocities.

Finally, let’s consider how non-uniform distributions can become uniform, doing this for
chequers, rather than the particles Thomson and Boltzmann considered; this will show how
general are the situations that came into clear focus with the discovery of thermodynamics
and its explanation by statistical mechanics. Let us suppose the following procedure, based
on Boltzmann’s 1872 model of the effect of collsions, for changing any given chequer dis-
tribution. Let there be two bags, one containing red balls numbered 1 to 48 and another
white balls numbered 1 to 64. Initially, let there be a strikingly non-uniform distribution
of chequers. In the first step of the procedure, one ball is drawn at random from each bag.
Wherever it it, the chequer with the number on the red ball is moved to the chequer square
with the number on the white ball. Of course, there is a tiny chance it will already be there,
in which case nothing is done. This procedure continues step by step forever.

Now since chance determines what happens in each step and, initially, there are many
more uniform distributions than the non-uniform one from which we begin, I think you
will agree that, with very high probability, the chequer distribution will tend to become
more uniform with each step. However, there will always be a small chance that it becomes
less so, generally for only a few steps. After a large number of steps, the distribution will
almost certainly have become significantly more uniform though there is always the tiniest of
chances that the reverse process will set in and the distribution becomes much less uniform.
You will recall Boltzmann’s comment that in Lotto the probability of drawing the sequence
1,2,3,4,5 from a bag of the first five integer numbers is just as likely as any other sequence,
for example, the less ‘special looking’ 3,1,5,2,4. The point is that all sequences are equally
likely. To even begin to comprehend the meaning of entropy in the real world you have to
think of the first one hundred integers in a bag and imagine the chance of drawing them out
in the sequence 1, 2, 3, 4, . . . , 97, 98, 99, 100. It might happen, just as you might toss a fair
coin and get heads one hundred times in a row (that’s much more probable than getting the
first one hundred integers in the correct order).

Once the distribution has got close to the greatest uniformity that is possible, it is almost
certain to stay very near to it for a very long time. However, there will always be small
fluctuations away from the maximum and, if you wait for long enough, there will eventually
come a time at which the distribution becomes markedly non-uniform. If it does get there,
it is almost certain to begin to get more uniform again very soon.

Now suppose you know that such a lottery has been going on for aeons of time and you are
shown just one distribution, the current one, and you find it is very non-uniform. You know
the rules of the game and therefore, without being shown the immediately preceding and
following distributions, you can bet with high confidence that in both temporal directions the
uniformity will be greater, if not immediately then at least after relatively few steps. If the
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distribution is already far from uniformity, the chance that it will get even more non-uniform
is very small.

Although Thomson never came remotely near giving an argument along these lines in
his 1874 paper, his argument that I italicized on p. 72 has the same underlying basis though
applied in a continuous rather than discrete form. Boltzmann too arrived at essentially the
same conclusion in his first paper of 1877, as is clear from this passage:

I will mention here a peculiar consequence of Loschmidt’s theorem, namely that when
we follow the state of the world into the infinitely distant past, we are actually just
as correct in taking it to be very probable that we would reach a state in which all
temperature differences have disappeared, as we would in following the state of the
world into the distant future. This would be similar to the following case: if we know
that in a gas at a certain time there is a non-uniform distribution of states, and that
the gas has been in the same container without external disturbance for a very long
time, then we must conclude that much earlier the distribution of states was uniform
and that the rare case occurred that it gradually became non-uniform.

Note that, unlike Thomson (who only considered molecules in a box), Boltzmann is here
considering two quite different scenarios: one in which the evolution of the whole universe
in two directions of time is considered and another in which an experimentalist is examining
gas in a container and will be aware of the background arrow of time. This makes it possible
to establish an unambiguous ‘before–after’ ordering of the states of the gas. But in the case
of the whole universe, what criterion is being used to define the direction of time? It was
nearly twenty years before Boltzmann was forced to confront this question directly. We will
come to that in the next chapter.
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13 Boltzmann’s Tussle with Zermelo

We now come to the final part in the saga of Boltzmann’s work on the second law. It set’s
the scene for the new interpretation of time’s arrows in The Janus Point.

First some background. In the decade and a half that followed Boltzmann’s 1877 insight,
majority opinion among German physicists turned, rather surprisingly, against atomism and
the statistical-mechanical interpretation of thermodynamics. That this happened despite
the remarkable successes that had been achieved had two main reasons. First, the atomists
encountered increasingly great difficulties in arriving at precise models of atoms that matched
observations. This applied especially to the failure to explain the ratio of specific heats:
energy that theory strongly suggested should be present in internal vibrational degrees of
freedom obstinately refused to manifest itself. Equally seriously, the spectral lines of the
radiation emitted and absorbed by atoms and molecules were proving extremely difficult to
interpret theoretically. What nobody realized was that models based on classical mechanics
had no chance of resolving these problems. That had to wait until the full discovery of
quantum mechanics in the mid 1920s by Heisenberg and Schrödinger. Thus, failures fully
understandable with hindsight were fostering a certain distrust in atomism.

Perhaps more important was the philosophical movement known as positivism. Several
prominent thinkers on the continent, especially in Germany and Austria, favoured it. The
best known among them was Ernst Mach (1837-1916), best known for his criticism of New-
ton’s concepts of absolute space and time and his discovery of shock waves; te Mach numbers
are named for him. Mach had a strong distrust of theory because his study of the history
of science had shown how many seemingly plausible theoretical models proved under testing
to be inadequate to describe phenomena. Caloric is a good example. Like other positivists,
Mach argued that the only proper task of science was to identify and describe phenomena
that one could repeatedly observe and describe by means of measurement. However, it was
in fact at just about the time Mach finished his university studies that the discipline of theo-
retical physics really started to come into its own. The great thing about theory is that, from
an initial ‘bold hypothesis’ (to use Karl Popper’s expression), one can deduce consequences
by strict logical argument and predict hitherto unexpected effects. A classic example was
Maxwell’s discovery, much to his surprise, that the viscosity of a gas should not depend on
its density. In turn this helped in the first determinations of the size of atoms and molecules
the results of which were later confirmed by many different independent methods.

Distrust in atomism and adherence to positivism peaked in the 1890s; an important factor
was the difficulties encountered by mechanical models in explaining irreversible phenomena,
above all the growth of entropy. Although he was careful not prescribe precise models of
atoms, Boltzmann was for decades a leading advocate for atomism and was challenged for
this reason. Sadly for Boltzmann (and bad for Mach’s posthumous reputation) there was a
famous occasion when Boltzmann gave a lecture about atoms at the Imperial Academy of
Science in Vienna in 1897 after which Mach said loudly from among the listeners “I don’t
believe that atoms exist.”

The opponents of atomism argued that countless experiments had shown that, under
appropriate exclusion of external effects, entropy never decreased in a closed system and in
general increased. This, it was argued, should simply be accepted as a fundamental law of na-
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ture. Attempts to explain away the conflict between the reversibility of mechanical laws and
the irreversible growth of entropy violated sound principles of science, which should concern
itself solely with the identification and clear economic description of universal phenomena.

It was Boltzmann’s misfortune, towards the end of his life, to be a lonely defender in the
German-speaking world of the virtues and successes of the rival approach to positivism that
is today called theoretical physics. He was a classic example of a prophet unrecognized in
his own country. He was taken much more seriously in Britain and in 1894 was invited to
attend a meeting of the British Association in Oxford at which there was a serious discussion
of the famous H-theorem and its apparent conflict with time-reversal symmetry as raised by
Loschmidt. This meeting stimulated Boltzmann to write a letter to Nature (in remarkably
good English) in which he addressed various questions in the philosophy of science and
concluded with a passage that sets the scene perfectly for Boltzmann’s last stand defending
the virtues of atomism and the mechanical explanation of entropy.

He notes that Mr Culverwell, in a letter to Nature, had said the H theorem could not be
true, for “if it were true every atom of the universe would have the same average vis viva,
and all energy would be dissipated.” Boltzmann countered that “this argument only tends
to confirm my theorem, which requires only that in the course of time the universe must
tend” to such a state. Thus there is nothing wrong with the H-theorem; the great mystery
is “why this state is not yet reached”. He then continued:

I will conclude this paper with an idea of my old assistant, Dr Schuetz.

We assume that the whole universe is, and rests for ever, in thermal equilibrium. The
probability that one (only one) part of the universe is in a certain state, is the smaller
the further this state is from thermal equilibrium; but this probability is greater, the
greater is the universe itself. If we assume the universe great enough, we can make
the probability of one relatively small part being in any given state (however far from
the state of thermal equilibrium), as great as we please. . . . Assuming the universe
great enough, the probability that such a small part of it as our world should be in its
present state, is no longer small.

If this assumption were correct, our world would return more and more to thermal
equilibrium; but because the whole universe is so great, it might be probable that at
some future time some other world might deviate as far from thermal equilibrium as our
world does at present. Then the afore-mentioned H-curve would form a representation
of what takes place in the universe. The summits of the curve would represent the
worlds where visible motion and life exist.

In this passage the summits of the H-curve are, in accordance with the definition of
the H-function, places where the entropy is low and the state is ordered. Second, in later
amplifications of the passage we will see that Boltzmann added some refinements and these
have had the consequence that Dr Schuetz’s role in the genesis of the original idea has
not received much notice. That seems a bit unfair since the proposal is an early (perhaps
even the first) and particularly clear example of what has become known as the anthropic
principle. This has been much discussed in recent decades for several reasons, the main one
being that the known laws of physics seem to be remarkably fine-tuned for the existence of
intelligent life or, at the least, the conditions we find around us—visible motion and life, in
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Boltzmann’s striking expression.39 The anthropic principle says we should not be surprised
to find around us conditions favourable for our existence: if they were not so, we would not
be here. Many physicists dislike the anthropic principle; they would much prefer a theory
of everything. Even without that ambition, it is possible to raise a serious doubt about Dr
Schuetz’s idea and Boltzmann’s endorsement of it.

This relates to the notion of time capsules mentioned in the discussion of Thomson’s paper
of 1874. The observable universe that surrounds us not only exhibits ‘visible motion’—
concentrations of matter that move relative to each other—but much, much more: truly
remarkable evidence of a past in everything we examine. What is more, one could imagine
that fluctuations out of thermal equilibrium could contain hints of different pasts, but the
evidence points overwhelmingly to a unique past. It is found in structures that we can very
persuasively interpret as mutually consistent records of that past. There are many ways in
which a distribution of material particles can be far from thermal equilibrium but surely only
a tiny fraction will have a ‘time-capsule’ structure. Thus, to explain adequately the universe
we now observe we need to invoke a Schuetz-type argument twice: once to get to all the
localized states in the universe that are strongly out of thermal equilibrium and then once
more to get to the states that are both out of thermal equilibrium and are time capsules.
I’m not persuaded that mere probability arguments are sufficient to do that; at the least,
I have not seen the issue addressed except in a paper by the historian and philosopher of
science John Norton that I cite in The Janus Point,in chapter 5, which I show how the
Schuetz–Boltzmann fluctuation idea had to be abandoned when it was realised that a single
brain should fluctuate into existence believing itself to be in a universe than that a huge
region that looks like a universe should do so. That same chapter highlights how long the
conceptual ideas validly developed to study systems confined in a box have lived on to the
present day.

The seeds of the problems Boltzmann faced in his last stand in defence of atomism were
actually sown before the 1894 meeting in Oxford. The great French mathematician Henri
Poincaré (1854-1912) planted them in a very important (and long, 270 pages) paper that
he wrote in 1890. The paper is famous for more than one reason but mainly as the first
discovery of what later became known in dynamical theory as chaos. The name is a bit
unfortunate; what it refers to is the extreme sensitivity of some dynamical systems to slight
differences in the initial conditions. Tiny changes can later lead to huge differences. The
effect is often illustrated by the effect of a butterfly flapping its wings in the Amazon delta
on the weather in Europe weeks later. In fact, the phenomenon Poincaré found passed more
or less unnoted until Edward Lorenz rediscovered it in the context of weather forcasting in
1963. At the time of writing, there’s a beautiful illustration of the effect online to be found
by consulting Wikipedia.

The 1890 paper, “Sur le probleme des trois corps et les équations de dynamique,” was a
hurried revision and correction that Poincaré had made when, to his horror, he discovered
an error in a paper for which he had been awarded a prize by the King of Sweden. The paper
addressed the long-standing problem of the solar system’s stability. Might one day a planet
be ejected and fly off into interstellar space? There is no need to go into that question here.
All that I need to tell you about is the part of his paper in which Poincaré proved what

39I like Thomson’s ‘palpable’ (from Latin’s palpare to ‘feel, touch gently’) even better.
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has become known as his recurrence theorem. It and the foundation of its proof known as
Liouville’s theorem40 are so important for later I will need to spell them out as clearly as I
can. Luckily, the ideas are not too difficult to grasp.

Let’s start with Liouville’s theorem,41 which applies in particular to the important class of
dynamical theories that are called Hamiltonian, after the Anglo-Irish mathematician William
Rowan Hamilton (1805-1865) who developed them in brilliant fashion in the 1830s. One can
see such theories as a formalization of Newton’s laws for systems not subject to friction that
especially highlights their deterministic nature. Hamiltonian theory can be developed for
any kind of dynamical degrees of freedom, but I shall illustrate it for point particles since
the most basic issues around entropy and irreversibility can be illustrated with them.

The key concept is phase space. Suppose we haveN particles in (three-dimensional) space.
At any instant, 3N coordinates define the positions of the particles and 3N their velocities.
There are however rather remarkable mathematical reasons discovered by Hamilton—we
needn’t go into them you will probably be relieved to know—why it is more convenient to
use the particle momenta rather than the velocities. In the case of point particles, these are
simply the velocities of each particle multiplied by its mass. Just as two coordinates, say
longitude and latitude, can define a point on the two-dimensional surface of the earth, the
complete set of 3N + 3N = 6N positions and momenta defines a point in phase space.

Any such point defines a possible initial state of the dynamical system. Once it is speci-
fied, Hamilton’s equations, just like the Newtonian equations that they generalize, determine
the evolution uniquely in both time directions. They transport the phase point along curves
in phase space. It is a beautifully important fact about these curves that they never cross;
they either go on forever or make a closed loop.

We now come to Liouville’s theorem. The game Poohsticks in one of the Winnie-the-
Pooh books by A. A. Milne illustrates its content. Each player drops a stick on the upstream
side of a bridge. The stream carries the sticks along with its flow; the player whose stick
first appears on the other side is the winner. The sticks in this game are like the dynamical
points which Hamilton’s equations carry through phase space. A continuously connected set
of points is like a patch of oil carried along by the stream.

Using Hamilton’s equations, mathematicians can determine how such a patch behaves in
phase space by determining the curve followed in it by each phase point. What they find
is one of those beauties that, every now and then, mathematics throws up: the area of the
patch remains constant. It may be deformed and stretched out in all possible ways, but
the area does not change by a jot. Actually, I should not say area but volume since phase
space has 6N dimensions; it is only for the simplest two-dimensional phase spaces that an
area remains constant. It’s worth looking online for the illustration I found after a bit of
searching. You probably know how to do that better than me. If in doubt, I always start
with Wikipedia as the first port of call.

Poincaré’s recurrence theorem relies on Liouville’s theorem and, critically, holds provided
the total volume of the considered Hamiltonian system’s phase space is finite; the technical

40Joseph Liouville (1809-1882) was, as I mentioned, one of the mathematicians with whom Thomson had
discussions in Paris.

41It acquired great significance as the dynamical foundation of statistical mechanics in a book Willard
Gibbs published in 1902 shortly before his death.
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expression is has a bounded Liouville measure. This and the notion of phase space are
essential for everything that follows. Now suppose any region however small—the tiniest
patch in my previous account of Liouville’s theorem—and consider what happens to points
within it under the Hamiltonian flow. You can imagine throwing a stick into some small
region of a stream and following where the flow takes the stick. In an ordinary stream, the
stick would eventually be carried out to sea. But Hamiltonian flow in a region of bounded
Liouville measure is not like that. It’s more like the flow in a Jacuzzi in which a cork will be
carried around all over the place as long as the bath is operated. Of course, the laws of nature
hold eternally, so we must consider a Jacuzzi that runs for ever and a cork condemned, like
the Flying Dutchman, to be carried around by the flow in a never ending voyage. Note also
that at any given point the flow is always the same; it’s a very special Jacuzzi.

What Poincaré was able to show by combining Liouville’s theorem, the special nature of
the flow and the restriction on the phase space to have a bounded Liouville measure was this.
For any region in phase space, no matter how tiny, infinitely many flow lines pass through it
infinitely often. In the Jacuzzi analogy, a pointlike cork placed initially at any point within
an arbitrarily small region of the bath is bound to return infinitely often to that same small
region and pass through it. It is not bound to return to exactly the same point, but because
the region can be assumed to be arbitrarily small it must return infinitely often arbitrarily
close to the point. Liouville’s theorem plays a critical role in the proof because the volume of
a ‘patch’ of initial solutions carried along by the dynamical flow cannot avoid coming back
to where it once was, basically because in a bounded region ‘it runs out of places it can
visit’.42 There is some analogy, for which I am indebted to Jim Hurley, with a girl in sandals
stepping around a sand pit and leaving foot prints. However hard she tries to avoid stepping
on an already existing footprint, sooner or later she cannot step on any undisturbed sand.

If we remember that in statistical mechanics the motion of the cork stands for what
arbitrarily many mass points are doing in ordinary three-dimensional space, we see that
Poincaré’s result is extraordinarily powerful. A more refined illustration is needed. Imagine
a swarm of bees that fly forever in a windowless room. At an initial instant, note where
each bee is and the direction in which it is flying. Then the recurrence theorem states that
the swarm is bound to return infinitely often to a state in which each bee is arbitrarily close
to its original position in the room and is flying with direction and speed arbitrarily close
to what it had at the initial instant. This gives an inkling of how rigid and mighty are
laws of nature. Physicists see exquisite beauty in them; others find them as horrifying as
Calvin’s doctrine of predestination. It should be said that immense stretches of time—far,
far greater than the age of the universe—must pass before recurrence occurs; their length
increases rapidly with the number of particles.

Note also that the recurrence theorem does not say that each of the overwhelming ma-
jority of the solutions of the system will get arbitrarily close to any (or virtually all) points
of its phase space. A system for which this is true is said to be ergodic. Remarkable though
it is, the recurrence theorem only says the system will return infinitely often infinitely close
to a point in its phase space through which it has already passed.

Poincaré’s proof of his recurrence theorem occupied only a few pages of his monumental

42Poincaré showed that in fact there are some exceptional solutions that return to the original region only
a finite number of times, but, being exceptional, these can be ignored.
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270 page paper of 1890. In it, he does not connect the theorem with thermodynamics, but,
like Mach, Poincaré was deeply sceptical about atomism and mechanical explanation of the
second law. In 1893, in his brief paper “Mechanism and experience”, he used his recurrence
theorem to mount an attack.

The opening sentence sets the tone: “Everyone knows the mechanistic conception of
nature which has seduced so many good men, and the different forms in which it has been
dressed.” But how, he asks, can one reconcile the fact that in accordance with the mechanistic
hypothesis “all phenomena must be reversible” whereas experience provides a number (he
could have said an innumerable number) of examples of irreversible phenomena.

After dismissing an attempt by Helmholtz to resolve the problem he says “The English
have proposed a completely different hypothesis.” He illustrates it by a comparison: “If
one had a hectolitre of wheat and a grain of barley, it would be easy to hide this grain in
the middle of the wheat; but it would be almost impossible to find it again, so that the
phenomenon appears to be in a sense irreversible.” At this point, he refers to Maxwell’s
demon and says “For such a demon, if one believes the mechanists, there would be no
difficulty in making heat pass from a cold to a hot body.” He calls the development of this
idea “the most serious attempt to reconcile mechanism and experience”. He continues, with
obvious reference to his recurrence theorem,

But all the difficulties have not been overcome.

A theorem, easy to prove, tells us that a bounded world, governed only by the laws of
mechanics, will always pass through a state very close to its initial state. On the other
hand, according to accepted experimental laws (if one attributes absolute validity to
them, and if one is willing to press their consequences to the extreme), the universe
tends towards a certain final state, from which it will never depart. In this final state,
which will be a kind of death, all bodies will be at rest at the same temperature.

I do not know if . . . the English kinetic theories can extricate themselves from this
contradiction. The world, according to them, tends at first toward a state where it
remains for a long time without apparent change; and this is consistent with experience;
but it does not remain that way forever, if the theorem cited above is not violated;
it merely stays there for an enormously long time, a time which is longer the more
numerous are the molecules. This state will not be the final death of the universe, but
a sort of slumber, from which it will awake after millions of millions of centuries.

According to this theory, to see heat pass from a cold body to a hot one, it will not
be necessary to have the acute vision, the intelligence, and the dexterity of Maxwell’s
demon; it will suffice to have a little patience.

One would like to be able to stop at this point and hope that one day the telescope
will show us a world in the process of waking up, where the laws of thermodynamics
are reversed.

.
After this beautiful discussion, which I find strengthens rather than weakens the ‘English’

position, Poincaré claims that “unfortunately, other contradictions arise”. However, in the
hundred or so words that remain of his paper, the objections he raises are by no means
substantiated and Poincaré’s hope to demolish the mechanistic philosophy remains little
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more than an aspiration; he puts no flesh on his arguments. Curiously, there is no mention
of Boltzmann in the paper. Was it perhaps some antipathy to the German-speaking world
or just a desire, realized through the ironic tone (‘a little patience’), to make a bit of fun at
the expense of the English?

Liouville’s theorem and the recurrence theorem now take centre stage. As you follow the
drama unfold, please don’t forget that Liouville’s theorem holds whether or not there is a
bound on the phase space measure, but the recurrence theorem fails without one.

Although Poincaré did not mention Boltzmann, and Boltzmann does not seems to have
been aware of Poincaré’s papers of 1889, 1890 and 1893, the young German mathematician
Ernst Zermelo (1871-1953), who was an assistant to Max Planck in Berlin, literally pounced
on them. As you know, Planck was initially sceptical if not hostile to the mechanistic at-
tempts to explain the second law; his famous textbook Thermodynamik of 1897 favoured the
purely phenomenonogical approach to the subject. Zermelo’s intervention, surely encour-
aged by Planck, had the great virtue of drawing out Boltzmann to make what were in effect
his last comments on the second law and its statistical interpretation. Zermelo, for his part,
went on to become a famous logician; he found a way to resolve some of the paradoxes in
set theory and in it proved an important theorem (every set can be well ordered). In 1935,
he resigned from his post in Freiburg on the edge of the Black Forest in protest at Hitler’s
regime but was restored to an honorary status after the war.

Zermelo’s first paper on thermodynamics appeared in 1896 and began with a proof of
the recurrence theorem, which he showed must hold “provided that the coordinates and
velocities cannot increase to infinity”. Zermelo’s following attack on atomism in fact does
little more than raise the problems to which Poincaré had drawn attention, moreover in
Zermelo’s case with rather more words and no ironic wit. Specifically, Zermelo supposes
“a gas enclosed in a rigid container with elastic sides that are inpenetrable to heat”. In
such a situation, initial states “instead of undergoing irreversible changes, will come back
periodically to their initial states as closely as one likes”. Since the mechanistic theory
requires quantities like the temperature and entropy to be determined by the instantaneous
state, irreversible changes of them cannot be expected to occur. Unlike Poincaré, Zermelo
does not grant that an apparent heath death might last for an enormously long time before
being woken from slumber though that is a clear implication of the recurrence theorem.

Unlike Poincaré’s papers, Zermelo’s did rouse the bear; Boltzmann’s response appeared
within a few months in the same volume of the Annalen der Physik. He began by saying
that, like Clausius, Maxwell and others, he has “often emphasized as clearly as possible”
that Maxwell’s velocity distribution law

is by no means a theorem of ordinary mechanics which can be proved from the equations
of motion alone; on the contrary it can only be proved that it has a very high probability
. . . At the same time I have also emphasized that the second law of thermodynamics
is from the molecular viewpoint merely a statistical law. Zermelo’s paper shows that
my writings have been misunderstood; nevertheless, it pleases me for it seems to be
the first indication that these writings have been paid any attention in Germany.

Boltzmann immediately grants that Poincaré’s theorem “is clearly correct” but that
Zermelo’s application of it “to the theory of heat is not”. I won’t go into the details of
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Boltzmann’s response but its gist is simple and convincing. Expressed in terms of entropy,43

it is that in a container at rest holding a great number of molecules their state will for
vast stretches of time be very close to the most probable one of maximal entropy. There
will always be tiny, essentially unobservable deviations from that state but just occasionally
there will be large deviations. The time between such fluctuations will be many, many times
greater than their duration. It is true that the entropy of the system can decrease and that
therefore the molecular theory of heat cannot derive the second law of thermodynamics as
an absolute law that never fails. Indeed, for a small number of molecules (which had never
yet been observed) Boltzmann grants violations of the second law must be expected to occur
frequently.

However, the real question is whether “the mechanical viewpoint led to some consequence
that was in contradiction to experience”. This would be the case if a system were observed
to pass from a low to a high entropy state and then return to the original low-entropy state
in an observable length of time. If not, we would never actually see any such violation of the
second law. Boltzmann was able to give a simple example involving “a trillion tiny spheres”
which showed that the recurrence time must be “comfortingly large”. Indeed, the length of
the time “makes any attempt to observe it ridiculous”. However, Zermelo, surely egged on
by Planck, was a true gadfly, and that was not the end of the argument. Before we come
to Zermelo’s second attack, two further passages from Boltzmann’s first response will be
important later.

Towards the end of his paper, Boltzmann briefly turns his attention from the molecules
in a box and says:

Naturally, we cannot expect from natural science an answer to the question—how does
it happen that at present the bodies surrounding us are in a very improbable state—
any more than we can expect from it an answer to the question why phenomena exist
at all and unfold in accordance with certain given laws.

Although, like Boltzmann, I suspect that any answer to his second question, if it exists
at all, is probably far beyond our present ken, I do think there may well be a satisfactory
answer to his first question; among other things it explains why we have those gifts of nature
(footnote 2) all around us and why I have written this book—and indeed am able to revise
it now. In fact, I think that in the paper we are discussing, Boltzmann already gives some
hints about where the answer to his first question, and with it the resolution of the problem
of time’s arrows and the second law, is to be sought: through consideration of the universe
in its totality and not just things we can observe around us. It is not that he says much
that is at all explicit. However, having noted that the Poincaré theorem suggests “the entire
universe must return to its original state after a sufficiently long time” he asks:

How shall we decide, when we leave the domain of the observable, whether the age of
the universe, or the number of centres of force which it contains is infinite? Moreover,
in this case the assumption that the space available for motion, and the total energy,
are finite, is questionable.

43Boltzmann actually discussed the equivalent behaviour of his H-function.
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Brief as these comments are, I argue in that they are critical. This applies especially to
the second caveat: if the space available for motion is not finite, the universe does not have
a phase space of bounded Liouville measure and the recurrence theorem fails. The system
is not in a box. The implications are spelled out in The Janus Point.

Here we continue with the ‘battle’ over the status of the second law fought out in the
pages of the Annalen der Physik. Zermelo’s response to Boltzmann’s response came soon. He
grants he had not been fully familiar with “Herr Boltzmann’s investigations of gas theory”
and agreed that one could choose either the Carnot–Clausius principle, in accordance with
which entropy never decreases, or the fundamental modification entailed in the mechanical
viewpoint. He then continued with a passage that perfectly captures the sceptical positivistic
attitude to atomic theory then prevalent among many Continental scientists:

As for me (and I am not alone in this opinion), I believe that a single principle sum-
marizing an abundance of established experimental facts is far more reliable than a
mathematical theorem, which by its nature represents only a theory which can never
be directly verified; I prefer to give up the theorem rather than the principle, if the
two are inconsistent.

A little later, Zermelo raises, rather effectively, a new issue. He notes that the discussion
concerns

the entropy of any arbitrary system free of external influences. How does it happen,
then, that in such a system there always occurs only an increase of entropy and equal-
ization of temperature and concentration differences, but never the reverse? . . . It
seems to me that probability theory cannot help here, since every increase corresponds
to a later decrease, and both must be equally probable or at least have probabilities of
the same order of magnitude.

This kind of argument leads Zermelo to conclude that the initial state one would find on
examining a system of molecules subject to Poincaré recurrence can just as well lie in a time
interval in which the entropy is decreasing as one in which it is increasing. How then does it
come that one only always observes an increase of entropy? He argues that “as long as one
cannot make comprehensible the physical origin of the initial state, one must merely assume
what one wants to prove”. A little later he says “It is clear a priori that the probability
concept has nothing to do with time and therefore cannot be used to deduce any conclusions
about the direction of irreversible processes.”

Predictably, Boltzmann’s response to Zermelo’s response followed in the next volume of
the Annalen der Physik. I will come to the subtle argument by which Boltzmann countered
Zermelo’s entropy-decrease-as-likely-increase argument in a moment. But I first want to give
what can be seen as the two options that Boltzmann saw at the end of his life as the best
ultimate mechanical explanation of the second law of thermodynamics. To this day, almost
all such explanations that have been advanced boil down to one or other of his two proposals.

Both come right at the start of the paper, where he suggests that

the universe—or at least a very large part of it which surrounds us—started from a
very improbable state, and is still in an improbable state. Hence, if one takes a smaller
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system of bodies in the state in which he actually finds them, and suddenly isolates this
system from the rest of the world, then the system will initially be in an improbable
state, and as long as the system remains isolated it will always proceed toward more
probable states.

Of his two proposals, the first—that the universe as a whole rather than only “a very large
part of it which surrounds us”—has by far been taken more seriously for several decades.

Boltzmann’s second proposal, later in the same paper, develops the suggestion he had
made in Nature in 1895 and attributed there to Dr Schuetz. What he now said in 1897 was
that in a sufficiently large universe which is in thermal equilibrium as a whole and therefore
dead, there must be

here and there relatively small regions of the size of our galaxy (which we call worlds),
which during the relatively short time of eons deviate significantly from thermal equi-
librium. Among these worlds the state probability increases as often as it decreases.
For the universe as a whole the two directions of time are indistinguishable, just as in
space there is no up or down. However, just as at a certain place on the earth’s surface
we can call “down” the direction toward the centre of the earth, so a living being that
finds itself in such a world at a certain period of time can define the direction of time
as going from the less probable to more probable states (the former will be the “past”
and the latter the “future”) and by virtue of this definition he will find that this small
region, isolated from the rest of the universe, is “initially” always in an improbable
state. This viewpoint seems to me to be the only way in which one can understand the
validity of the second law and the heat death of each individual world without invoking
an unidirectional change of the entire universe from a definite initial state to a final
state.44

It was through passages like these that Boltzmann persuaded scientists that the expe-
rienced direction of time is aligned with the direction of entropy increase. The 1895 letter
to Nature did not include the argument that the less probable state will be taken to be
the “past”. This is one of the ideas for which Boltzmann is famous; it seems have been his
own addition to Schuetz’s original idea. I think it is clear that neither Thomson in 1874
nor Boltzmann in 1877 had been capable of shedding the instinctive feeling that, whatever
may be happening in the world, time flows forward inexorably. Also, I am not aware that
Boltzmann ever made it fully explicit that intelligent beings could exist on both sides of a
single localized entropy dip and would therefore live in a spatially and temporally part of
the universe with bidirectional arrows of time.

However, near the end of the section Application to the universe in the second part
(published in 1898) of his Lectures on Gas Theory, having repeated some of the comments
made in the exchange with Zermelo, he does say that if unidirectional change of the entire
universe from a definite initial to a final state does not occur the situation will be as follows:

In the entire universe, the aggregate of all individual worlds, there will however in
fact occur processes going in the opposite direction. But the beings who observe such

44The ‘only way’ in this last sentence seems to me to imply that Boltzmann’s preference for explanation
of the entropic arrow was through fluctuations that, without violating time-reversal symmetry, would create
transiently existing worlds of low-entropy dips.
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processes will simply reckon time as proceeding from the less probable to the more
probable states, and it will never be discovered whether they reckon time differently
from us, since they are separated from us by eons of time and spatial distances 1010

10

times the distance to Sirius—and moreover their language has no relation to ours.

This is very close to saying explicitly that there will be bidirectional arrows associated
with a single entropy dip.

If the part of Boltzmann’s response considered above, which effectively killed Newton’s
notion of absolute time that flows uniformly “without relation to anything external”, has
stood the test of time rather well, I am not able to say the same about his answer to what
had seemed a killer argument on Zermelo’s part: why don’t we see entropy decrease around
us as often as we see it increase? In fact, Boltzmann makes no direct attempt to counter
the argument. He merely says that large deviations from maximal entropy are enormously
more rare than small ones. What he might have said but didn’t is that if you do manage
to catch a state with low entropy it will very soon, if not immediately, return to one of
maximal entropy even if initially the entropy does decrease. This is because the probability
of departures from maximal entropy get vastly more improbable the greater the departure.
The system is therefore likely to find its way back toward equilibrium rapidly. This kind
of argument was given later by other physicists and was in fact already anticipated by
Boltzmann in 1877.

However, my belief is that the recurrence theorem has led people, beginning with Zer-
melo and Boltzmann, to think about the problem in quite the wrong way (as I already
started to suggest in chapter 1. We need to consider the conditions under which the problem
is formulated. The situation the founders of statistical mechanics asked us to envisage is
extremely artificial but fine for their needs. It did sterling service. The setting is a sealed
box that contains a gas consisting of a huge number of molecules under conditions for which
the recurrence theorem holds. If we were a god-like observer of the gas with faculties as
sharp as Maxwell’s demon, we would surely see the gas’s entropy rise and fall, mostly with
the tiniest of dips but also very, very rarely with large ones. Just as Zermelo argued, the
time taken to go into a dip would on average be equal to the time taken to emerge from
it. However, as we are not gods and cannot see through the box, we would actually have
to make measurements on it. Even if we could do this without disturbance, the chances of
finding a significant departure from equilibrium are essentially zero. At least in Boltzmann’s
time, tests of the molecular theory of gases could never have been made in that way.

By and large, the tests that could be made, both under equilibrium and non-equilibiurm
conditions (the latter involving viscous flow, for example), gave rather good support for the
molecular hypothesis. In particular, Boltzmann’s definition of entropy in terms of a count of
microstates gave a beautiful mechanical explanation of Clausius’s phenomenological dS =
dQ/T definition of entropy increments and explained why it is entropy and not heat that is
conserved in Carnot’s idealized steam engine. The problem lay elsewhere. Boltzmann had
identified it when he said science could not explain why “at present the bodies surrounding
us are in a very improbable state”. Zermelo had echoed this when he said no progress could
be made until one can “make comprehensible the phyiscal origin of the initial state”.

One of the gifts of nature to which I drew attention earlier more than once is the profusion
of bodies around us that enable us to make measurements and do experiments. They are
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all “in a very improbable state”. It is their existence which makes it possible to set up sys-
tems enclosed in a box in highly non-equilibrium states that then equilibrate and are never
observed to disequilibrate. Boltzmann was entirely justified in saying that the mechanical
theory of heat in conjunction with probablility arguments provided a fully adequate expla-
nation of what happens under the conditions of such experiments. The problem is not that
we never see an equilibrated system disequilibrate; it is the lack of equilibrum all around us
that is the problem. You will recall Carnot’s comment “The phenomenon of the production
of motion by heat has not been considered from a sufficiently general point of view.” The
problem we face now is not the nature of heat; that has long been clarified. What we need
is a point of view that enables us to understand where all the bodies in highly improbable
states all around us come from.

It has long been suspected that this will require us to shift our view from the laboratory
to the universe. As we have just seen, Boltzmann’s writings already contain hints in that
direction, but there was hardly any way in which useful ideas about the universe could have
been obtained in the 19th century; the necessary theory and above all observations were
completely lacking. What is more, no suggestions that go significantly beyond the two that
Boltzmann made to Zermelo have been made since their debate. One thing that I do find
particularly surprising about the studies of time’s arrows, in all the years that have elapsed
since their tussle, is the failure to consider the role played throughout the development of
thermodynamics and statistical mechanics by the gas container. That work all goes back,
very understandably, to Carnot’s idealized heat-engine and its conceptualized steam box.
The box provided the perfect framework for understanding the properties and nature of
heat and the associated studies led to much, much more. But when it came to the ultimate
explanation of time’s arrows, too many theorists were looking in the wrong direction—into
the box and not out into the universe. Once you do that, you have to ask: is the universe in
a box?

This is not an idle question. Ultimately it is a box, either physical or conceptual, of some
kind that creates conditions under which the Poincaré recurrence theorem holds. It is also
the box that, at least in macroscopic situations on human time scales, ensures the ubiquitous
irreversible occurrence of equilibration, the mechanical explanation of which led Boltzmann
to his greatest achievements. One of the surprising things about the post-Boltzmann study of
time’s arrows has been the apparently unconscious transfer of arguments appropriate under
conditions when the recurrence theorem will hold to circumstances for which that seems very
questionable. In this respect, Richard Feynman’s discussion of the entropic arrow of time in
the first volume of his justly famous Lectures on Physics is illuminating.

His comments on the issue of why entropy always increases come immediately after his
discussion, which closely follows Boltzmann’s count-of-microstates idea, of how one can define
the entropy of gas confined in a box. He then considers the problem of the origin of the
entropic arrow and says that

one possible explanation of the high degree of order in the present-day world is that
it is just a question of luck. Perhaps our universe happened to have had a fluctuation
of some kind in the past, in which things got somewhat separated, and now they are
running back together again. This kind of theory is not unsymmetrical, because we
can ask what the separated gas looks like either a little in the future or a little in the
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past. In either case, we see a grey smear at the interface, because the molecules are
mixing again. No matter which way we run time, the gas mixes. So this theory would
say the irreversibility is just one of the accidents of life.

However, he argues that this is not a satisfactory explanation:

Suppose we do not look at the whole box at once, but only at a piece of the
box. Then, at a certain moment, suppose we discover a certain amount of order
. . . What should we deduce about the condition in places where we have not
yet looked? If we really believe that the order arose from complete disorder
by a fluctuation, we must surely take the most likely fluctuation which could
produce it, and the most likely condition is not that the rest of it has also become
disentangled! Therefore, from the hypothesis that the world is a fluctuation, all
of the predictions are that if we look at a part of the world we have never seen
before, we will find it mixed up, and not like the piece we just looked at. If our
order were due to a fluctuation, we would not expect order anywhere but where
we have just noticed it. [But] astronomers, for example, have only looked at some
of the stars. Every day they turn their telescopes to other stars, and the new
stars are doing the same thing as the other stars. We therefore conclude that the
universe is not a fluctuation, and that the order is a memory of conditions when
things started.

This observation leads Feynman to say that the order is not due to a fluctuation but to
a much higher ordering at ‘the beginning of time’; he concludes

This is not to say that we understand the logic of it. For some reason, the universe at
one time had a very low entropy for its energy content, and since then the entropy has
increased. So that is the way toward the future. That is the origin of all irreversibility
. . . [This] cannot be completely understood until the mystery of the beginnings of the
history of the universe are reduced still further from speculation to scientific under-
standing.

The volume of Feyman’s Lectures from which I have quoted these words, all of which
Boltzmann could have said (and in some cases did), was published in 1963. That was nearly
six decades after Boltzmann’s death and over three decades after the expansion of the uni-
verse had been firmly established. But despite the wide gap of time and the monumental
discovery of the universe’s expansion, the conceptual framework of box and recurrence fluc-
tuations is not questioned but merely found wanting. Is it not time to ask whether the
universe is in a box?

A bon mot often helps. In Boltzmann’s interpretaion of entropy, each microstate is a point
of phase space. One can also define a microhistory. It’s just the complete history traced out
from a given microstate. For a system in a Poincare-recurrence ‘box’, i.e., both positions and
momenta restricted, the microhistories go on forever and at no stage do anything remotely
interesting. Even the rare larger fluctuations lack structure. In a review of Samuel Beckett’s
two-act Waiting for Godot, the Irish theatre critic Vivian Mercier said it is “a play in
which nothing happens, twice.” How well that comma is placed! In conventional statistical
mechanics, microhistories are stories in which nothing happens, not just twice but infinitely
many times.
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