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Two Problems

1. Given time-reversal symmetric laws,

whence come the arrows of time?

• Growth of entropy

• Growth of structure and information

• Retarded potentials

2. Do we live in a typical universe?
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Key Insight

Conventional thermodynamic systems are confined.

The universe is unconfined

Arrow-of-time literature reveals little awareness of the difference.
The two cases require very different conceptualization.

We identify two entropy-like quantities in the universe:
Decreasing Entaxy and Increasing Entropy
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Summary

A realistic proof-of-principle N-body model suggests:

1. The Second Law of Thermodynamics must hold in a self-gravitating
universe. No special ‘initial condition’ required.

2. If the law that governs the Universe is known, it will have typical solutions
about which strong predictions can be made.

3. These predictions appear to hold in our Universe.
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Meaning and Significance of Confined

Ideal gas in a box

Experimentally box permits controlled
supply and extraction of heat; measure-
ment of pressure P , volume V and tem-
perature T in equilibrium; and thus de-
termination of entropy:

dS =
dQ

T
+
PdV

T

Theory: Gibbs (1902) created statistical mechanics for general Hamiltonian
systems but to count microstates (S = k logW ) imposed conceptual boxes:
bounded measures of (1) configuration space, (2) momentum space
(no 1/r2 forces⇒ no gravity. Both ‘unnatural’).
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Consequences of Confining Box

Free expansion ‘thwarted’⇒ equilibrium and infinitely many Poincaré
recurrrences. Solutions are qualitatively time-reversal symmetric.

Aeons Aeons

heat death heat death heat deathheat death
t t t t t t

t

S

Boltzmann: “The universe is, and rests forever, in thermal equilibrium.” Only
near deep entropy dips “are worlds where visible motion and life exist . . . the
direction of time towards the more improbable state [will be called] the past.”
This is a one-past–two-futures interpretation of each improbable state.

Boltzmann: Second Law is due to huge fluctuation in our remote past.
Today: Big Bang must have had an exceptionally low entropy.
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Unconfined Janus-Point Systems

Every solution splits in two at a unique Janus point J. Either side of J
evolution is time-asymmetric. Each solution has one past and two futures.
Observers in either half must find an arrow of time. All solutions similar: no
special initial conditions.

7



1. Simplest Janus System: Inertial Motion

t

ra(t) = ra(0) + va(0) t

Moment of inertia Icm =
∑
a ma r

cm
a · rcma has one minimum (Janus point J).

Away from J system tends to Hubble-type expansion ( ṙab ∝ rab ), so positions
and momenta weakly correlated at J but highly correlated as t→ ±∞. Does
not look like entropic decay of order into disorder.
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2. Dissipationless Waves of Compact Support

Disorder →Outgoing Retarded Waves

Time reversal (gauge transformation). Then

‘Fine-Tuned’ Incoming Waves → Disorder

Einstein (1909): Advanced waves not observed because
‘initial conditions’ statistically improbable. But

Outgoing Waves ← Disorder → Outgoing Waves

suggests that we live in a Janus-type universe in which
retarded potentials are ‘attractors’ in both asymptotic regions.
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Is the Universe Confined or Unconfined?
......................................................
Disorder ← Order → Disorder
Disorder ← Order → Disorder
Disorder ← Order → Disorder
Disorder ← Order → Disorder

Order ← Disorder → Order

Poincaré: time direction (statistical) is from Order to Chaos

Janus: time direction (dynamical) is from Chaos to Order
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3. The Relational N-Body Problem

Gravity makes things much more realistic and interesting.
Relational: The conditions Ecm = L = 0 exclude absolute elements.

All key effects present in the simplest non-trivial case: the 3-body problem.

Hyperbolic–Elliptic Escape: Singleton from left meets Kepler pair
in 3-body interaction→ (new or old) singleton and pair.
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One-Past–Two-Futures Interpretation

Each diagonal is a history that be-
gins in the central Janus-point re-
gion from which pair and singleton
emerge. Qualitative symmetry of
histories matches exact symmetry
of equation. Time from ‘big-bang’
measured by periods of emergent
Kepler pair.

In each history, the ‘universe’ expands and breaks up into branch systems.

Gravity creates structure out of chaos. For internal observers, only sensible
choice for direction of time fixed by growth of structure, information and
records (orbital elements stabilize ever better).
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Noether II Universe, Noether I Branch Systems

The relational N -body universe is
a Noether-II gauge system with
constraints Ecm = L = 0. But
the branch systems asymptote to
Noether-I systems with conserved
non-vanishing energy E, momen-
tum P and angular momentum L.
Treat differently!

For the N -body Universe, we introduce the entropy-like quantity entaxy,
which decreases in both directions away from the Janus point J.

We show that branch systems are born with a Boltzmann entropy that
increases in both directions away from J.
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Statistical Mechanics for Universes

Counterparts of Gibbs’ Conditions:

• Any entropy-like quantity must be a count of microstates in a
phase-space region of bounded-measure defined by a state function.
Mere monotonic increase does not make an entropy.

• State functions and measures must be scale-invariant
(no rods and clocks external to the Universe).

• State functions should reflect fundamental properties of the Universe
(like energy in conventional stat mech to find S(E)).

Our Aim: To determine the typicality of universes
(Like Gibbons–Hawking–Stewart (1986) but with significant differences).
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The Key Scale-Invariant Concept: Shape Space S

The N-body Newtonian configuration space Q has 3N degrees of freedom.
Translations and rotations are 3 + 3. The (centre-of-mass) moment of inertia
Icm =

∑
a<bmamb‖ra − rb‖2 is the scale dof. The remaining 3N-7 shape dofs

(and mass ratios) define Shape Space S (quotient of Q wrt the similarity
group). Shape space is compact with bounded measure (no box needed).

If N = 3 shape space is the space of trian-
gle shapes. Since 2 internal angles fix a tri-
angle, S corresponds to 2D Shape Sphere
shown here for the equal-mass case. Points
at equal longitude but opposite latitudes rep-
resent mirror-image triangles. The degen-
erate collinear triangles lie on the equator,
the equilateral triangles at the poles. Colour
coding to be explained.
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Newton in Shape Space

Newtonian solutions project to undirected unparametrized curves in S. If they
were geodesic, a point and direction would fix a solution. Laplacian shape
determinism fails:

• Absolute orientations give 3 components of angular momentum L.

• Absolute (metric) time allows different values of the energy E.

• Absolute scale allows moment of inertia Icm to change.

Cauchy data in S: shape, direction and 3 + 1 + 1 numbers. Relationism
enforces E = L = 0 but scale ( Icm ) remains.

Cauchy data are Shape + Tangent Vector, not Shape + Direction.

Single extra Hamiltonian dof is architectonic
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The Lagrange–Jacobi (Virial) Relation

If V homogeneous, V (αra) = αkV (ra) , then
1

2
Ïcm = Ecm − 2(k + 2)V

If Ecm ≥ 0 , then because VNew < 0 and k = −1 we have Ïcm > 0

The moment of inertia is U-shaped upwards, the dilatational momentum
D =

∑
a ra · pa (= 1

2İcm) is monotonic and vanishes once (figure).

t
D

Icm

CS

Architectonics: D is a Lyapunov variable
⇒ no periodic solutions ⇒ no Poincaré
recurrences; at Janus point D = 0 a
point and direction do determine a solu-
tion. The relational N -body problem is not
quite scale-invariant, but its Cauchy problem
is. Mid-point solution-determining data at
D = 0 are scale-invariant, non-redundant
and unbiased.
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Dynamical Similarity

If V homogeneous, then

ra → αra, t→ α1−k/2 t,

maps solutions to geometrically similar solutions (k = −1 generalizes Kepler’s
Third Law). NB: not a Noether symmetry.

Solutions with initial momenta of same direction but different magnitudes are
identical in Shape Space. Gibbs’ exclusion of 1/r2 potentials not needed.

Since S is compact, both Gibbs ‘boxes’ for confined systems
arise naturally for true observables of the unconfined N-body universe.

18



Attractors in Shape Space

Liouville measure is conserved in the Newtonian phase space. Therefore,
if scale part increases⇒ shape part decreases. In inertial motion,
ra(t) = ra(0) + va(0) t , so ra tend as t→ ±∞ to a shape fixed by va(0).

Gibbs ensemble of 20 two-dimensional
inertial motions with identical velocities
but different initial positions. In shape
space the ensemble contracts as t →
±∞ to a single common shape.
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Attractors in Newtonian Gravity

For dynamics of shapes − logCS acts as a shape potential
and the dynamics appears dissipative. Attractors + gravity⇒
isolated clusters form⇒ emergent Second Law in all solutions.
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A Scale-Invariant Measure of Clustering

Expansion of universe is not ‘seen’ but deduced from evolution of ratios:

Galactic Diameters
Inter-Galactic Separations

→ 0

To reflect this, we define a scale-invariant measure of clustering CS as the ratio
of two mass-weighted lengths: the root-mean-square length `rms and the
mean harmonic length `mhl

`rms :=

√√√√√∑
a<b

mamb r
2
ab

m2
tot

=
√
Icm/mtot,

`−1mhl =
1

m2
tot

∑
a<b

mamb

rab
=

1

m2
tot
VNew,

Shape Complexity CS = `rms/`mhl.

A sensitive measure of clustering
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Shape Complexity as a State Function

We cannot use Ecm as state function (it is zero). However, CS is epoch
dependent and, like E, dynamically fundamental (−CS is the shape potential).
(Newtonian gravity seems ‘designed’ to create structure!)

Colour coding shows CS (minima at poles,
infinite at ‘needles’). All shape microstates
on a CS contour belong to a CS-macrostate.
We will define a metric on S that makes it
possible to count microstates and define
an entropy-like quantity for the universe.
Besides getting an emergent Second Law in
all solutions, we can calibrate the typical-
ity of every solution.
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Typical 3-Body Solution

t
D

Icm

CS

Creation of complexity, information and physical rods and clocks
with respect to which the universe ‘expands’.
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1000-Body Simulation

t

CS

Sumulation Above: large N smooths wiggles. Below: ‘Artistic impression’.
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Mid-Point Data

Each solution has its unique Janus point J.
At J, a shape and direction in S determine a solution.

At J, set scale-invariant, unbiased, non-redundant mid-point data.
Minimal encoding of all objective information conserved by evolution.

Elements of cotangent bundle T∗S of S have direction and magnitude
but magnitudes irrelevant (dynamical similarity)⇒ points of PT∗S

projectivized cotangent bundle (Janus manifold) fix distinct solutions.

PT∗S is odd-dimensional (contact geometry, Arnold’s Mechanics),
and its points map one-to-one onto the solution space.
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Measure on the Solution Space

A symplectic measure is induced on T∗S (Arnold) but is infinite
(momentum magnitudes unbounded, Gibbs 1/r2 restriction).

On Q there is a unique unbiased scale-invariant mass metric:

ds2 =
N∑
a=1

ma dra · dra
Icm

.

Riemannian quotienting induces a distinguished metric on S.

At any shape in S, the metric above makes it possible
to attribute a norm to shape momenta.

Shape Space and (Relative) Shape Momenta have
bounded measures without Gibbs-type restrictions.
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Typicality of Solutions: Entaxy

Use CS and a momentum analogue CM as state functions.

All shape microstates on a CS, CM level
surface belong to a shape macrostate with
volume ES,M induced by the shape metric.
We call E = log ES,M the entaxy of a so-
lution that has complexities CS, CM at its
Janus point. Entaxy is a scale-invariant
entropy-type quantity: how likely it is for
a universe to have a given shape and
shape-space direction at its Janus point.
Effective initial data for internal observers.
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The Known Unknown: In Which Solution Are We?

We know the law of the universe. Can we predict what the typical solutions
will be like? Laplace’s Principle of Indifference: if a certain number of
outcomes are possible but nothing else known, give equal probability to each
(maximum entropy principle, fundamental postulate of stat mech).

Like GHS, but now with bounded measure
and total control of solution space, we fol-
low Laplace and give equal probability to
equal-measure regions. The probability of
occurrence of a universe is proportional to
its entaxy at its Janus point. The proba-
bilities with which triangle shapes occur at
the Janus point can be read off from the fig-
ure (few ‘needles’).
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Shape-Space Volume vs. Complexity
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C/Cmin
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Measure of shape macrostates as function of CS/Cmin. Sampling caveat but
suggests typical universes will be very uniform at the Janus point.

With one exception, we avoid Schiffrin–Wald objections to GHS.
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Late-Time θ vs. Janus-Point CS in 3-Body Problem

θ
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Weaker effect for Kepler-pair eccentricity. The theory is predictive.
For N > 3 many quantities can be predicted⇒

observations can tell us how typical our universe is.
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Typicality of States: Current Entaxy

Define the current entaxy of a solution as
the entaxy it would have were it at its Janus point.

Due to the strong attractors on
S and gravitational clustering, the
complexity grows away from D =

0 ⇒ current entaxy decreases.
Probability for the universe to be
created randomly in its current state
always decreases from the maxi-
mum probability very near but not
exactly at the most uniform state.
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Emergent Second Law for Subsystems in All Universes

• Attractors on S + gravity enforce formation of increasingly isolated clusters.
Their sizes and life times can be measured by Kepler pairs (emergent rods and
clocks). The cluster gravitational self-potentials act as ‘confining boxes’⇒ no
need for Gibbs’ configuration restriction.

• Each cluster has E < 0 and is metastably bound: once it forms and virializes,
ordinary statistical quantities like Gibbs or Boltzmann entropy can be defined.

• The clusters are branch systems (Reichenbach 195?, Davies 1974): they
avoid the time-reversal and recurrence objections to Boltzmann’s H theorem
because created in the past of internal observers.

• Second Law holds: coarse-grained descriptions assign increasing
Boltzmann entropy to subsystems (Padmanabhan 1990, Gross 2002).
Uniformity near J and pervasive time asymmetry either side of J ensures all
arrows of time point the same way everywhere and everywhen for internal
observers.
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Checklist for General Relativity

The N-Body model is a Proof of Principle. Issues for GR:

• Attractors on S for expanding universe: Yes.

• Bounded measures: No because field theories have infinitely many dofs.
Planck-type quantum blackbody resolution may ‘turn up’.

• Generic ‘shape + direction’ Cauchy data:
Yes for vacuum GR (JB & Ó Murchadha 2010), with matter perhaps.

• Existence of J: Yes at maximum expansion in Big-Bang–Big-Crunch
universes, but we need it at Big Bang, which is special but there analogue
of D, the York time Y → ∞. Smooth continuation of conformal geometry
through Big Bang would be sufficient (scale factor is gauge). Much work in
progress.

33


